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In commenting on a famous paper which showed nonexistence of equilibrium in an economy with
imperfect information, Yaari told the “shocked” economists that the problem lay neither in the solution
concept nor in the real world, but rather ... in the model.1 (Rubinstein 1991)

1 Introduction

In his Walras-Bowley lecture, Rubinstein (1991) discusses the “purification idea” and commenting
on the Radner-Rosenthal (1982) purification theorem, observes that the provided conditions are
“not mild, and there are simple examples of informational structures by which a mixed-strategy
equilibrium could not be purified.”2 Radner-Rosenthal themselves introduce their paper with the
statement that “if there are any surprises in this paper, we feel they are in the strength of the hy-
potheses needed to establish existence of pure-strategy equilibria and the ease with which examples
may be constructed which do not possess such equilibria.”3 Nevertheless, the Radner-Rosenthal the-
orem, and the Milgrom-Weber (1985) theorem to follow it,4 present a formalization of the following
intuition.

It is also sometimes claimed that when information in games is sufficiently disparate among the players
and when its distribution is sufficiently diffuse, the players might as well restrict their attention to pure
strategies.5

This paper is an exploration of the second use of the qualifier sufficiently, and through its presen-
tation of five theorems, resolves a problem that has been open at least since the Radner-Rosenthal-
Milgrom-Weber papers written in the early eighties.

The question then is to find language for sufficient conditions on the diffusedness of private
information under which one would obtain positive results on the existence of pure-strategy Nash
equilibrium for a general class of games. A trajectory of partial results that have so far been
obtained can be easily laid out.6 For games with countable (finite or infinite) action sets, it is

1See [42, Footnote 18]. The reader may want to note that we join two parts of Rubinstein’s sentences into one.
2See [42, Footnote 7]. Note that there is a minor blemish in this footnote in that its assertion to the contrary,

unlike [13], Radner-Rosenthal do not consider a “perturbed game.”
3See the third paragraph of [37, Introduction]. We warn the reader the examples of non-existence of pure-strategy

equilibria furnished in [37] concern their independence assumption, and what they refer to as sufficiently disparate
information. This is not our concern here, and the interested reader may want to look at [4, 38].

4See [33, Theorem 4] and the authors’ discussion of how their theorem generalizes the purification results in [37].
For this relationship between the two theorems, also see [19]. It is also worth emphasizing that Milgrom-Weber
discuss several issues that go beyond purification of pure-strategy equilibria.

5See the first paragraph of [37, Introduction]; the italicization is not in the original. Later on in their text, the
authors themselves refer to this sentence in the following terms: “Our opinion is that there is some truth in the
imprecise claims mentioned in our first paragraph.”

6Our use of the word “partial” is not meant to suggest that the theory of finite, one-shot games of incomplete
information, as surveyed the early nineties by Fudenberg-Tirole [11, Chapter 6], has not seen substantial progress
in several registers: (i) the existence of mixed-strategy equilibria and their continuity has been shown under rather
general conditions in [5, 8], (ii) the approximate and exact purification of such equilibria has been furnished in
[4, 38, 22, 25, 8], (iii) the central position of the Dvoretsky-Wald-Wolfowitz (DWW) generalization of Lyapunov’s
theorem in the latter results comprehensively delineated in [19, 28, 36, ?], (iv) the direct proof of the existence of
pure-strategy equilibria obtained in [29, 10], (v) the importance of cardinality assumptions on the action sets for the
theory has been clearly identified in [23, 18, 25], and (vi) the conceptual and technical foundations of the subject
clarified, for example, in [3, 47]. Also, under (ii), there is an early paper of Harsanyi’s [13] but its direction is
tangential to the work of [37, 4, 33], and therefore to the thrust of this paper; see the discussion of this paper in [42]
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sufficient to model diffused information by Lebesgue spaces to obtain a general existence result; see
[37, 33, 10] for the case of finite action sets, and [22, 8] for that with countably-infinite ones. For
uncountably-infinite action sets, pace Fudenberg-Tirole (1991), a relatively early (KRS) counterex-
ample [18] dashed any hopes of Lebesgue spaces being sufficient for such game-theoretic situations.7

This example was subsequently circumvented and subdued by the introduction of an atomless Loeb
probability space as a model for information in [23, 24, 28, 29],8 and thereby furnished one successful
formalization of the qualifier sufficiently in the Radner-Rosenthal requirement of sufficient diffused-
ness of information. However, as argued in [23, 24], Loeb spaces are a solution to a variety of ills of
idealized limit models in economic theory – asymptotic implementability, permutation-invariance,
measurability perspectives – and it is worth asking whether one can isolate the essential property of
Loeb spaces that delivers the existence of pure-strategy equilibria of finite games with incomplete
information, the sole focus of this paper, without taking the other issues, however important, into
its consideration.

In the context of the general theory of large non-anonymous games, this question9 has now
been definitively resolved by Keisler-Sun [17]. On taking their cue from the saturation property
formalized in Hoover-Keisler [15] in the form of a saturated filtration,10 they showed that, loosely
speaking, this property that is satisfied by a Loeb measure space is both necessary and sufficient
for the existence of Nash equilibria in such games.11 This work has effected a fundamental trans-
formation of the theory by connecting an abstract, and initially somewhat incidental, property of a
probability space to the existence of Nash equilibrium of a large non-anonymous game with action
sets of uncountable cardinality: the tying together of two literatures with an if-and-only-if result
that were previously not tied at all. Furthermore, following [17], once this property was directly
connected to Maharam’s [31] classification of measure algebras, progress has been relatively fast
and furious. It is now clearly understood that there is at least a triple route to results on saturated
spaces. (i) The first route builds on the fact that a Loeb space satisfies the saturation property,
and is thereby a saturated space, and, as stressed in [17], results on Loeb spaces can themselves
be transferred in a straightforward way to saturated spaces.12 This is referred to in [30] as the
Hoover-Keisler technique. (ii) The second route is to exploit the connection to Maharam’s results:
identify the saturation property, again loosely speaking, as the requirement that the restriction of
the σ-algebra to any set of positive measure be not countably-generated, bypass Loeb spaces and
any odour of nonstandard analysis altogether. Such a route, admittedly technically challenging but
so far without new substantive consequences from a methodological viewpoint, has been pursued

and in [41].
7As pointed out in [18, Footnote 2], there is a general claim by Fudenberg and Tirole of the existence of pure-

strategy equilibria in finite games of incomplete information with compact metric action sets in [11, Theorem 6.2 and
p. 236]. This led to a corrective of past views that perhaps deserves to be more widely known.

8However, under the further specification of information being modeled by atomless Loeb spaces, the existence
theory admits a satisfactory generalization to compact metric actions sets, a setting already conceived in Fudenberg-
Tirole; also see Footnote 6 for other references.

9Without in any way implying it to be a motivation for [17], we observe that this question was posed to the first
author by Jean-Francois Mertens at a post-seminar dinner at CORE in May 1996.

10Their motivation came from the need for a systematic study of the existence of strong solutions for stochastic
integral equations; see [6] for a comprehensive discussion.

11Note that this paper was circulated in 2002; see [17, Acknowledgement]. The authors specialized the setting to
a single measure space, and henceforth referred to it as a saturated measure space.

12See also [30, 44], [30, Remarks 2.5 and 2.6] and Footnote 36 below.
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by Podczeck to systematically provide direct proofs; see [35, 36]. (iii) A third route, ascribed to
Keisler (see [30, Remark 2.6]), remains so far unexplored:

If a property is approximately true in every atomless probability space, then the property is true in
every saturated space.13

This is how the matter stands for the theory of large anonymous and non-anonymous games.
However, it bears emphasis that despite the fact that both large anonymous and non-anonymous

games and finite games with incomplete information involve atomless probability spaces, they admit
different interpretations and refer to different substantive registers. Even from a technical point
of view they are not isomorphic in any straightforward way.14 This leads one to ask whether the
methodological advances and resulting insights described above apply to finite games with imperfect
information? and if so, how? For this, we go back to the drawing board and begin with the KRS
example itself. In the first substantive section of the paper, Section 2, we show how this example
can be upgraded to a general class of games that we term KRS-like games. These are games
modeled on compact metric action spaces,15 on information spaces modeled on arbitrary atomless
probability spaces, but with a structure of payoffs that lead their equilibrium distributions to have
the same sort of structure as those of the KRS example; see Proposition 1 below. With the KRS
example, and KRS-like games in place, we turn in Section 3 to a more detailed consideration the
two basic technical underpinnings of the results. The first subsection concerns saturated probability
spaces, already referred to above, and the second to what we explicitly identify as “measure spaces
satisfying the d-property,” a probability space that does not allow a measurable selection to be
chosen from the so-called d-correspondence and that induces uniform measure on the range of the
correspondence.16 The prominence that we give to measure spaces having the d-property is, to be
sure, new to the literature: it is a point of departure that forms a subtext to the principal results
of this entire work.

Next, in Section 4, we turn to the question of how the non-existence of equilibrium in the KRS
example can possibly be circumvented, and return to the example itself. This question is moti-
vated by a recent consideration of three correspondences, one of them being the d-correspondence,
that do not admit special kinds of measurable selections.17 It is shown in [26] that in so far as
these correspondences are concerned, a simple extension of the Lebesgue interval that goes back
to Kakutani [16] in the forties,18 and one whose σ-algebra is countably generated, is enough to
guarantee the requisite selections, and that the resulting techniques have relevance for the theory
of large non-anonymous games. However, as emphasized above, large non-anonymous games differ

13However, there are results in [20] that can be usefully read from this perspective.
14See Remark 3 in [32] for an attempted synthesis in the context of distributional strategies, and [8, 9, 10].
15As we shall see below, this represents a total volte face from the Fudenberg-Tirole claim referred to in Footnote 7,

and the text it footnotes.
16This correspondence is reproduced in Figure 2 below, and was referred to in [26] as the Debreu correspondence

simply as a mnemonic, but as indicated there, Hart-Kohlberg do ascribe it to Debreu in an entirely different context
and for an entirely different purpose. Our current use of the letter d for this correspondence, and for the d-property
of a measure space based on it, is meant to indicate a situation where each type of agent has a dual best-response.
However, if the reader wishes, he or she can capitalize d and make an non-obligatory nod in Debreu’s direction.

17One of these correspondences derives from the celebrated example of Lyapunov; see Claims 1 to 3 in [26, Section 1].
18Also see [27]. The difficulty of the work is the need for a translation-invariant extension
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technically and substantively from finite games with incomplete information,19 and two somewhat
sharp questions, each apparently standing on their own, naturally suggest themselves. We turn to
the first:

(i) Does this extended probability space, an extension of the Lebesgue interval, resolve the KRS
counterexample?

The first subsection of Section 4 answers this question in the affirmative. There exists a pure-
strategy Nash equilibrium in the KRS example if the information spaces are modeled on the ex-
tension of the Lebesgue interval, rather than on the Lebesgue interval itself. And so this appears
to be all that there is to it.

Unfortunately this success is more illusory than real. We show in another subsection of Section
4 itself that the KRS example can be modified and resituated on the extended information spaces
to yield another troublesome counterexample to the existence of pure-strategy equilibria. This
example is of a finite game with information spaces “richer” than those used in the KRS example,
but also with the payoffs suitably accommodated and refined to pertain to those spaces. This is a
consequence of the well-known facts that

(a) there exists a continuous onto function from any uncountable compact metric space to [−1, 1],

(b) there exists a measurable mapping h from an abstract atomless probability space to the usual
Lebesgue unit interval such that its induced distribution is the Lebesgue measure itself.20

It is this upgrading of the (counter)example that motivates both a KRS-like game and a measure
space satisfying the d-property. But now one can reformulate the question under discussion, and
ask:

(i’) Does a further extension of the extended probability space resolve this “new” counterexample?

Perhaps somewhat surprisingly, the answer is again affirmative in that the techniques of [26], and
recapitulated in Section 3, are up to the task. However, a recursion now suggests itself and is
indeed executable in the form of a general result. Even though a finite game Gn based on an
n-fold extension of the Lebesgue interval has no Nash equilibrium, we can construct an (n+1)-fold
extension for which it has an equilibrium. And none of these constructed games Gn can have
Nash equilibria in any of the sub-extensions. The point is that all these constructed games are
KRS-like games with their information spaces satisfying the d-property.21 Indeed, this recursive
non-existence property culminates in a general theorem; see Theorem 1 below.

19This point has been made earlier; see Footnote 14 and the text that it footnotes; it bears repetition, however.
Also note that the theory of large non-anonymous games has itself been generalized to “non-anonymous games with
traits” in [20].

20See, for example, [39] for the first fact, and [17, Lemma 2.1] for the second; also the discussion in Section 2 below.
21There is of course a Godelian parallel here. Let T1 be a suitable theory, which is to say, complete and consistent.

Then it admits an undecidable proposition, call it S1. Let T2 be T1 extended by S1, and denoted T2 = {T1 + G1}.
Observe that although G1 is trivially deducible in T2, there is another undecidable in T2, say S2 etc. etc. Sn is never
decidable in Tn−1. In fact there is a countably-infinite series of pairs of theories and undecidables ! Extensions of this
type never work to furnish a general theory. The authors are grateful to Josh Epstein for bringing the relevance of
Godel’s incompleteness theorem to their attention. Josh also singled out parallels to Galois theory whose pursuit in
this paper would have taken us too far afield.
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The question then is what works? how can this unfortunate recursion be terminated? For this,
we turn to the second question mentioned above:

(ii) Does the existence theory for finite games with private information, as developed for atomless
Loeb spaces, generalize to saturated probability spaces?

This leads to an overview of Section 4 below. The clue lies in the “countable extension of a space
with a countably-generated σ-algebra.” Returning to [17], we note that a saturated probability space
is one whose associated σ-algebra is, loosely speaking, nowhere countably generated.22 The fact
that in a countably-additive setting, atomlessness, and the consequent diffusedness of information,
necessitates an information space of uncountable cardinality and a σ-algebra is clear enough;23

what is a novel in [17] is a turn from the cardinality of the information space to the cardinality of
the σ-algebra the space is endowed with. This rather important shift of emphasis deserves to be
underlined. On looking at this from another angle, one focused on Harsanyi’s notion of types rather
than information, it is clear that the interactive element in a genuine game-theoretic situation leads
to a type space of uncountable cardinality even when the original uncertainty of belief involves a
finite number of states;24 what is now being emphasized is the uncountable cardinality of the event
space rather than the sample space.25 At any rate, for a general existence theorem, one needs to
go beyond atomlessness and formalize sufficiently diffused by imposing the saturation assumption.
Such a theorem is presented in Section 4.2 below.26 The interesting fact is that the recursion is
finally closed with a saturated space. In Section 4.3, we establish what Keisler-Sun established for
large non-anonymous games: that the existence of a pure-strategy Nash equilibrium implies that
the information spaces be necessarily saturated.27 Thus, the results furnished in Section 4 bring
out, perhaps dramatically, that questions (i), (i’) and (ii) are intimately connected and do not really
stand on their own.

Given the above, somewhat multi-layered and sustained, argumentation underlying the results,
it might be worthwhile to look at its dialectic from another, and more critical, point of view. Rather
than beginning from the KRS example, and its possible resolution, we can turn the matter on its
head, and begin instead with the general necessary and sufficient results presented in Section 4.
While accepting their if-and-only-if claim – how could one not? – the necessity result can be given
a closer and more careful scrutiny. To be sure, the theorem asserts the existence of a game without
a pure-strategy Nash equilibrium on any game with incomplete information that is modeled on
an atomless probability space whose associated σ-algebra is countably generated, but what of the
existing KRS counterexample itself? Of course, the necessity result ensures that for this extended

22As noted in the third paragraph above, this observation furnishes the second route to saturated spaces, one
systematically exploited in [35, 36].

23See, for example, the discussion in [2].
24See Hart-Heifetz-Samet [14] and the alternative proof in [1].
25Also see the saturated extension of the Lebesgue interval in Sun-Zhang [45].
26Such a result is hinted in [17] but they had a much simpler setting in mind. As the reader will see, the sufficiency

result presented below requires some hurdles to be overcome.
27The alert reader may sense a contradiction here to the closing sentence of the previous paragraph, and to

Footnote 6. Unlike Godel’s theorem, we bring a certain completeness and termination to the issue in the form of
saturated spaces. However, this may be a consequence of the Polish assumption on the action sets, and one could
argue that the introduction of non-separable, albeit compact, action sets would again reactivate the recursion. For
some preliminary results in this vein, see [21].
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probability space, there will always exist a large game without pure-strategy Nash equilibria, but
this game may not have any substantive interest. Thus, one can hold the view that as far as the
substantive applications are concerned, there is little need for a result that proceeds beyond this
extension all the way to a saturated space. This is the point of view articulated in [26] in the
context of large non-anonymous games, and further discussion and exploration of whether this is,
or is not, only cold comfort for finite games with private information, must be left for future work
that turns to concrete applications.28

We now summarize the above narrative with a more succinct road-map for the reader. Section 2
provides a self-contained treatment of the KRS counterexample, and builds on it to define and
discuss KRS-like games; Section 3 introduces the saturation and the d-property of probability
spaces; and Section 4 shows how an extension of the usual Lebesgue unit interval resolves the
counterexample, but brings up a constant and never-ending supply of KRS-like games serving
as further counterexamples that need, in turn, further resolution. Section 5 presents the basic
“sufficient and necessary” results that involve saturated probability spaces for finite games with
private information. As the reader will see from the proofs collected in an Appendix labeled as
Section 7, the notions of KRS-like games modeled on a measure space satisfying the d-property
proves especially crucial for the necessity part of the theory. The paper concludes with Section 6.

2 KRS-like Games

This section is laid out in two subsections: the first recalls for the reader’s convenience the basic
outline of the KRS example [18],29 and the second uses the example to introduce KRS-like games
and to characterize the equilibria in such games.

2.1 The KRS Example Revisited

We now review the counterexample in [18]. In this game, there are two players, namely i = 1, 2, and
each player i can take actions from Ai = [−1, 1], and has the identical private information space
(Ti,Ti, µi) is modeled by the Lebesgue interval30 (I,L, η) where I = [0, 1]. The payoff functions are
defined as follows,

u1(a1, a2, t) = −|t− |a1|| + (t− a1)z(t, a2), (1)

u2(a1, a2, t) = −|t− |a2|| − (t− a2)z(t, a1), (2)

where z : [0, 1] × [−1, 1] → R is a function such that for all t ∈ [0, 1/2],

z(t, a) =







a, if 0 ≤ a ≤ t;
t, if t < a ≤ 1;

−z(t,−a), if a < 0;

28See [33, 40] and the references therein, especially to the work of Athey and McAdams. Recall also that the
introduction of [33] opens with William Vickrey’s 1961 auction paper.

29 Our presentation of this example emphasizes features which the authors were well-aware of more than a decade
ago but chose not to make explicit; see Fact 1 below. As such, more than an obligatory reference to the paper is
warranted.

30Throughout this paper, we shall reserve (I = [0, 1],L, η) for the unit Lebesgue interval.
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and for any t ∈ (1/2, 1], z(t, ·) = z(1/2, ·), that is, for all indexes t in [1/2, 1], the functions are
identical. See the following Figure 1 for the illustration of z(t, a).

1

4

1

2 1 a

z(1

4
, a)

z(0, a)

z(1

2
, a)

Figure 1: Graph of z(t, a)

Note that ui > −2, for all i = 1, 2. For simplicity, we will denote this game by

Γ0 = {(Ti,Ti, µi) = (I,L, η), Ai = [−1, 1], ui : i = 1, 2}.

Before going to the pure-strategy Nash equilibrium of Γ0, we first consider a function which is
highly related to the characterization of the equilibrium. Let w : I×M([−1, 1]) → R be a function
such that for any Borel probability measure ν on [−1, 1], and t ∈ I,

w(t, ν) =

∫

A

z(t, ·)dν. (3)

For player i, if the distribution of actions of the other player is ν, given that his action is ai and
his private information is ti, the ex-post expected payoff of player i, denoted by vi(ai, ti, ν), is

v1(a1, t1, ν) =

∫

a2∈A2

u(a1, a2, t1) dν(a2) = −|t1 − |a1|| + (t1 − a1)w(t1, ν),

v2(a2, t2, ν) =

∫

a1∈A1

u(a1, a2, t2) dν(a1) = − |t2 − |a2|| − (t2 − a2)w(t2, ν).

That is, each player’s ex-post expected payoff is influenced by his opponent’s strategy only through
the induced distribution of this strategy, and moreover, the influence of this action distribution is
only through the function w.

Let (g∗1 , g
∗
2) be a pure-strategy Nash equilibrium of Γ0, where g∗i : I → [−1, 1] is a Lebesgue

measurable function, and assume that the induced distribution ν∗i = λg∗−1
i on the action set [−1, 1].

Then, for η-almost all t ∈ I,

v1(g
∗
1(t), t, ν∗2 ) ≥ v1(a1, t, ν

∗
2 ) for all a1 ∈ [−1, 1],

v2(g
∗
2(t), t, ν∗1 ) ≥ v2(a2, t, ν

∗
1 ) for all a2 ∈ [−1, 1].
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Next we are ready to characterize the best response correspondences for this game Γ0. From
Proposition 2 of [18], it turns out that the function w plays a crucial role in the determination of
the best actions. In particular, if w(t, ν) is zero, either t or −t is the best response if the player’s
private information is t; if it is positive, the best response for player 1 is to take t at information t,
to take −t at information t for player 2; moreover, the situation is reversed if w(t, ν) is negative.

We now present some basic facts about the game Γ0 culminating in an equilibrium non-existence
claim.

Fact 1 (1) The action distributions νi ∈ M([−1, 1]) for player i, i = 1, 2, lead to the following
best-response correspondences

B1(t1; ν2) =







−t1 or t1, if w(t1, ν2) = 0;
−t1, if w(t1, ν2) > 0;
t1, if w(t1, ν2) < 0.

(4)

B2(t2; ν1) =







−t2 or t2, if w(t2, ν1) = 0;
t2, if w(t2, ν1) > 0;

−t2, if w(t2, ν1) < 0.
(5)

(2) If ν∗1 and ν∗2 are the induced action distributions of a pure-strategy Nash equilibrium of the
game Γ0, then w(t, ν∗i ) = 0 for any t ∈ I, and ν∗i ([0, a]) = ν∗i ([−a, 0]) = a/2 for any a ∈ [0, 1/2].

(3) There does not exist a pure-strategy Nash equilibrium in Γ0.

The first part of Fact 1 is Proposition 2 of [18], and the second part is a combination of Claims
1 and 2 therein. Here is an argument for the third part. If there exists a pure-strategy Nash
equilibrium (g∗1 , g

∗
2), then by (2), the induced action distribution for g∗i should be the uniform

distribution on [−1/2, 1/2]. Moreover, it follows from (1) that for any player i receiving any private
signal t ∈ [0, 1], his or her best response is either t or −t. As a result, restricted to [0, 1/2], g∗i
takes value either t or −t at t ∈ [0, 1/2] and this induces the uniform distribution on [−1/2, 1/2].
However, it is a standard result that there does not exist such a Lebesgue measurable map from
[0, 1/2] to [−1/2, 1/2] such that it takes value either t or −t for all t ∈ [0, 1/2] and yet induces the
uniform distribution on [−1/2, 1/2]; see the following Figure 2 for an illustration for this standard
result; for more details, see Claim 2 of [26].

2.2 KRS-like Games and their Equilibria

The private information spaces in the game Γ0 are represented by the usual Lebesgue unit interval,
the simplest “sufficiently diffused” space. We now turn to the construction of games based on Γ0

where the private information space of each player is modeled by an arbitrary atomless probability
space.

Let (Ti,Ti, µi), i = 1, 2 be two atomless probability spaces, and let hi : Ti → [0, 1] be a Ti-
measurable mapping such that the induced distribution over [0, 1] is the Lebesgue measure η.
Consider the following two player private information game to be denoted by Γh1,h2

. This game

9
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Figure 2: A selection of the d-correspondence that cannot induce a uniform distribution on [−1, 1]

is a variation of the above game, Γ0, with the same action space [−1, 1], but with (Ti,Ti, µi) the
private information spaces for player i, i = 1, 2,, and the following payoff functions:

ũ1(a1, a2, t1) = u1(a1, a2, h1(t)) = −|h1(t1) − |a1|| + [h1(t1) − a1] · z(h1(t1), a2), (6)

ũ2(a1, a2, t2) = u2(a1, a2, h2(t2)) = −|h2(t2) − |a2|| − [h2(t2) − a2] · z(h2(t2), a1). (7)

In particular,
Γh1,h2

= {(Ti,Ti, µi), Ai = [−1, 1], ũi : i = 1, 2}.

In this two-player private information game, the payoff function for player i with private information
ti is the same for this player in the KRS game Γ0 with private signal hi(ti). In other words, in the
game Γh1,h2

, the payoff function for each player differs from that in Γ0 only up to a “shift” of the
private information. In a rough sense, the game Γh1,h2

is akin to a game where each player’s private
information space is modeled by the usual Lebesgue unit interval, but it is important to maintain a
distinction, and we shall refer to a private information game Γh1,h2

as an KRS-like game in which
the private information spaces (Ti,Ti, µi), i = 1, 2 are taken as given. As a result, the best-response
correspondence in the KRS-like game Γh1,h2

is based on the best-response correspondence in Γ0 as
follows:

B1(t1; ν2) =







−h1(t1) or h1(t1), if w(h(t1), ν2) = 0;
−h1(t1), if w(h1(t1), ν2) > 0;
h1(t1), if w(h1(t1), ν2) < 0.

(4’)

B2(t2; ν1) =







−h2(t2) or h2(t2), if w(h2(t2), ν1) = 0;
h2(t2), if w(h2(t2), ν1) > 0;

−h2(t2), if w(h2(t2), ν1) < 0.
(5’)

Now, suppose that there exists a pure-strategy Nash equilibrium (g∗1 , g
∗
2) in the game Γh1,h2

,
where g∗i is a function from (Ti,Ti, µi) to [−1, 1]. Let ν∗i be the induced distribution of g∗i , i.e.,
ν∗i = µi ◦ (g∗i )

−1. We next claim that the equilibrium action distribution of each player’s strategy
also satisfies the following statement similar to (2) of Fact 1. The proof is provided Section 7.

Proposition 1 Suppose that ν∗1 , ν
∗
2 are the induced action distributions of a pure-strategy Nash

equilibrium of the game Γh1,h2
, then w(hi(ti), ν

∗
i ) = 0 for µi-almost all ti ∈ Ti, and the restricted

distribution of ν∗i on [−1/2, 1/2] is the uniform measure for i = 1, 2.

10



Proposition 1 is a strengthened version of Fact 1(2). This fact provides the characterization
of equilibrium distributions for the KRS game Γ0, where the private information space for each
player is modeled by the usual Lebesgue unit interval. Proposition 1 offers the characterization of
equilibrium distributions for all KRS-like game Γh1,h2

when player i’s private information space is
fixed to be any atomless probability space (Ti,Ti, µi),; and hi : Ti → [0, 1] is an arbitrary mapping
which induces the Lebesgue measure on the interval.

Remark 1 The characterization in Proposition 1 ensures that the distributions (ν∗1 , ν
∗
2) induced

by a pure-strategy Nash equilibrium (g∗1 , g
∗
2) must satisfy the stipulated conditions. Furthermore,

the best-response correspondences delineated in Equations (4’) and (5’), g∗i : Ti → [−1, 1] takes the
value hi(ti) or −hi(ti) for each ti. However, for a given atomless probability space (Ti,Ti, µi) and
given mapping hi : Ti → [0, 1], one may not find a Ti-measurable mapping satisfying the above
requirements. We shall discuss this question further in the sequel.

Remark 2 As concluded in [18], the non-existence result in the two-player private information
game Γ0 can be extended to general uncountable action spaces and to multi-player settings by
adding dummy players. Similarly, if there does not exist a pure-strategy Nash equilibrium in the
KRS-like game Γh1,h2

, given the private information spaces, then one can similarly extend such
a non-existence result for KRS-like games to general uncountable action spaces and multi-player
settings.

3 Basic Technicalities

This section is laid out in two subsections: the first recalls the definition of saturation for the reader’s
convenience, and the second proposes the notion of a probability space satisfying the d-property.
The basic intuition for such a property is introduced in Remark 1. We shall follow the following
notational conventions. The Lebesgue unit interval has already been specified in Footnote 30 to be
(I = [0, 1],L, η). For a Polish (complete separable metric) space X, we denote its Borel σ-algebra
by BX , and by M(X) the space of all Borel probability measures associated with the topology
of weak convergence. Moreover, probability or measure spaces mean complete countably additive
probability or measure spaces. The set of natural numbers is denoted by N.

3.1 On Saturated Probability Spaces

Given a probability space (V,V, ν), for any non-negligible subset W ∈ V with ν(W ) > 0, denote
by (W,VW , νW ) the probability space restricted to W . Here VW := {W ′ ∩ W : W ′ ∈ V} and
νW = ν/ν(W ) is the probability measure re-scaled from the restriction of ν to VW .

Definition 1 A measure space (V,V, ν) is called countably generated if there is a countable set
{Wn ∈ V : n ∈ N} such that for any W ∈ V, there is a set W ′ in the σ-algebra generated by
{Wn : n ∈ N} such that ν(W△W ′) = 0, where △ denotes the symmetric difference between W and
W ′. The measure space is called saturated for any subset W ∈ V with ν(W ) > 0, the measure
space (W,VW , ν) is not countably generated.
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The usual Lebesgue unit interval is a countably-generated probability space, and therefore not
a saturated probability space. In contrast, any atomless Loeb probability space is saturated (see
e.g., [15]). For more discussion of the saturated probability spaces, see [15], [17], [26].31

We next review some concepts related to the measure algebra for a measure space. Let (V,V, ν)
be a measure space. Consider a relation ‘∼’ on the σ-algebra V as follows. For any two V-measurable
subsets W,W ′, define W ∼ W ′ if ν(W△W ′) = 0. It is clear that ‘∼’ is an equivalence relation on
V. For any W ∈ V, let Ŵ be the corresponding equivalence class, i.e., Ŵ = {W ′ ∈ I : W ′ ∼ W}.
Similarly, denote by V̂ the set of all equivalence classes in V for the equivalence relation ‘∼’. Define
the canonical algebra morphism πV : V → V̂ by letting πI(W ) = Ŵ for any W ∈ V. It is clear that
V̂ is an algebra. Define ν̂ : V̂ → [0, 1] by letting ν̂(Ŵ ) = ν(W ) for any W ∈ V. The pair (V̂, ν̂) is
said to be the measure algebra of the measure space (V,V, ν).32

Definition 2 Let (V,V, ν) and (V ′,V ′, ν ′) be two measure spaces, and (V̂ , ν̂) and (V̂ ′, ν̂ ′) be their
measure algebras respectively. The measure preserving homomorphism ρ : V̂ → V̂ ′, is said to be
realized by a measure preserving map h : V ′ → V if for any W ∈ V, πV ′ [h−1(W )] = ρ[πV (W )],
where πV , πV ′ are the canonical morphisms. In other words, the following diagram commutes,

V
h−1

−−−−→ V ′

πV



y



yπ

V′

V̂
ρ

−−−−→ V̂ ′

where the homomorphism h−1 is naturally derived by h.

We next present a result on atomless countably generated probability spaces (see e.g., Theorem
4.12 of Fremlin [7, p. 937]) that proves instrumental for our results in the sequel.33 For the
Lebesgue interval (I,L, η), denote by (L̂, η̂) the measure-algebra. Let (V,V, ν) be an atomless
countably-generated probability space associated with the measure algebra (V̂, ν̂). By Maharam’s
theorem (see [31]), there exists a measure-preserving isomorphism ρ : L̂ → V̂ .

Fact 2 Given an atomless countably generated probability space (V,V, ν) and the measure algebra
isomorphism ρ as above, then ρ can be realized by a measure-preserving mapping h from (V,V, ν)
to the usual Lebesgue unit interval (I,L, η).

31Note that we are defining the saturation property in a different way from [17, Definition 2.2]. There, a nonatomic
probability space (T, T ,µ) is said to have the saturation property for a probability measure ν on the product of Polish
spaces X × Y if for every random variable f : T → X which induces the distribution as the marginal measure of ν

over X, there is a random variable g : T → Y such that the induced distribution of the pair (f, g) on (T, T , µ) is ν.
Furthermore, (T, T , µ) is said to be saturated if it has the saturation property for every probability measure ν on
every product of Polish spaces. It is shown in [15, Corollary 4.5] that these two definitions of the saturation property
(for a probability space) are equivalent.

32See [7] for more on measure algebras.
33See also [17, Theorem 2.7, p. 1589], [44], [26] for similar applications of this result to the theory of distributions

and integral of correspondences.

12



3.2 On Probability Spaces with the d-Property

For any atomless probability space, (V,V, ν), let L(V,V ,ν) be the set of measurable functions that
induce Lebesgue measure on the usual unit interval. It is well known that L(V,V ,ν) is non-empty,
see, e.g., [17, Lemma 2.1]. We can now formally define

Definition 3 An atomless probability space (V,V, ν) is said to satisfy the d-property if there exists
h ∈ L(V,V ,ν) such that the associated d-correspondence v ։ {h(v),−h(v)} does not have any mea-
surable selection that induces uniform measure on [−1, 1], and the map h is said to the witness of
this d-property.

We now make a useful observation for a particular witness h : V → [0, 1]. Given that the d-
correspondence v ։ {h(v),−h(v)} does not have any measurable selection that induces uniform
measure on [−1, 1], one can focus on two cases: the nonexistence of the measurable selection takes
place either in the first half interval [0, 1/2] or in the second half [1/2, 1]. If the second case obtains,
one can consider the following h′ : V → [0, 1],

h′(v) =

{
2h(v), if v ∈ h−1([0, 1/2]);

2h(v) − 1, if v ∈ h−1([1/2, 1]).

It is clear that h′ ∈ L(V,V ,ν) and when restricted to [0, 1/2], the associated d-correspondence t ։

{h′(v),−h′(v)} does not have any measurable selection that induces uniform measure on [−1/2, 1/2].
As a result, h′ is also a witness of the d-property of (V,V, ν). Throughout the paper, we shall
therefore assume that a witness h of a space with the d-property is also a witness of this property
for the subspace restricted to h−1([0, 1/2]).

Finally, the relationship between the d-property and the saturation property can be summarized
in the following result. This result plays an essential role in the sequel.

Proposition 2 (1) A non-saturated probability space (V,V, ν) has the d-property. (2) In particular,
if it is a countably generated probability space, the map h in Fact 2 is a witness of the d-property.
(3) A saturated probability space does not have the d-property.

Remark 3 Parts (1) and (3) of Proposition 2 show that the absence (negation) of saturation,
the non-saturation property, is exactly the d-property! Actually, a “baby version” of this idea is
already available in the proof of Theorem 3.7 in [17]. Indeed, the authors of [17] present many other
characterizations of the saturation property, and our purpose in giving salience to the d-property is
that in the context of KRS-like games, it is precisely this characterization of the saturation property
that plays an essential role.

4 Finite-Player Games on Lebesgue Extensions

In this section, we turn to the KRS example itself, and ask whether we can obtain a pure-strategy
Nash equilibrium in the game Γ0 by jettisoning the usual Lebesgue unit interval, and simply turning
to a more sophisticated atomless probability structure? We will answer this question in the affirma-
tive in Section 4.1 by using the countably-generated extension of the usual Lebesgue unit interval
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in [26].34 However, as argued in the introduction, we show in Section 4.2 that this “more sophis-
ticated” and enriched atomless probability space generates its own example of finite-player games
without pure-strategy Nash equilibria, but which in turn can be resolved by further enrichment of
the σ-algebra. We conclude with a general result formalizing this dialectic in Section 4.3.

4.1 The KRS Example Resolved

In Section 2, we know that in the two-player private information game Γ0 where the private infor-
mation structure for each player is the usual Lebesgue unit interval (I = [0, 1],L, η), there exists
no pure-strategy Nash equilibrium. Let (I,I, λ) be the countably-generated extension of the usual
Lebesgue unit interval in Section 2.2 [26].

Next, we consider the following game,

Γ̃0 = {(Ti,Ti, µi) = (I,I, λ), Ai = [−1, 1], ui : i = 1, 2}.

Here Γ̃0 is the same game as Γ0 except that each player’s private information space is replaced by
the countably-generated Lebesgue extension. We now present the following positive result for this
new game.

Claim 1 There exists a pure-strategy Nash equilibrium in the game Γ̃0.

Compared to Γ0, each player in Γ̃0 has a more rich private information space. One natural
indication of Claim 1 is that the negative result in game Γ0 can be resolved if the private information
space of each player is updated from the Lebesgue unit interval to its extension. Notice that (I,I, λ)
is still a countably generated probability space. One natural question is that if each player’s private
information space is modeled by this space, whether we could get a sophisticated theory such that
there exists a pure-strategy Nash equilibrium in any private information game. The example below
provides a negative answer to this question.

4.2 Yet Another Counterexample

Notice that (I,I, λ) is a countably-generated probability space, by Maharam’s theorem, there is
an isomorphism from the measure algebra of the Lebesgue unit interval to that of the Lebesgue
extension (I,I, λ). According to Fact 2, this isomorphism can be realized by a measure preserving
mapping from (I,I, λ) to (I,L, η), denote the mapping by h0. It follows from Proposition 2 (2)
that h0 witnesses the d-property for the Lebesgue extension (I,I, λ).

Now consider the following KRS-like game, Γh0,h0
.

Γh0,h0
= {(Ti,Ti, µi) = (I,I, λ), Ai = [−1, 1], u1

i : i = 1, 2.}

Now we are ready to present the following negative result. It follows from Proposition 2 (2)
and Proposition 1.

Claim 2 There does not exist a pure-strategy Nash equilibrium in the game Γh0,h0
.

34Note that all the notations, and the meanings as well, of the Lebesgue extensions (I,In, λn) and the mappings
hn here are the same as those in Section 5.2.3 of [26].
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However, as far as the KRS-like game Γh0,h0
is concerned, one can resolve this nonexistence

result in a similar way as the resolution of the non-existence result for the KRS game Γ0 as in
Section 4.1. In particular, first we can construct a countably generated extension of (I,I, λ),
denote it by (I,I1, λ1); see Section 5.2.2 of [26] for the construction. Second, we are considering a
new game by simply updating each player’s private information space from (I,I, λ) to (I,I1, λ1),

Γ̃h0,h0
= {(Ti,Ti, µi) = (I,I1, λ1), Ai = [−1, 1], u1

i : i = 1, 2}.

In this way, the nonexistence result in the KRS-like game Γh0,h0
can be resolved.

Claim 1′ There does exist a pure-strategy Nash equilibrium in Γ̃1.

4.3 A General Negative Result

This procedure in Section 4.2 can be continued inductively at infinitum in the following sense.
First, as in Sections 5.2.2 and 5.2.3 of [26], a sequence of countably-generated probability spaces
{(I,In, λn) : n = 0, 1, · · · } can be constructed, where the first countably-generated Lebesgue ex-
tension (I,I, λ) is denoted by (I,I0, λ0), and for any n ∈ N, (I,In, λn) is a countably-generated
extension of (I,In−1, λn−1). Second, if each player’s private information space is modeled by
(I,In−1, λn−1), there exists a KRS-like game such that there does not exist a pure-strategy Nash
equilibrium. Third, as far as this KRS-like game is concerned, if each player’s private informa-
tion space is modeled by the countably-generated space (I,In, λn), then the nonexistence result is
resolved.

Now we specify the construction of the sequence of KRS-like games. For any n ∈ N, since
(I,In−1, λn−1) is obtained from (n− 1)-times of countably generated extension from the Lebesgue
unit interval, it turns out that (I,In−1, λn−1) itself is a countably-generated probability space.
According to Fact 2 and Proposition 2 (2), there is a mapping from (I,In−1, λn−1) to the Lebesgue
unit interval (I,L, η), denote the mapping by hn−1, such that hn−1 witnesses the d-property for
the Lebesgue extension (I,In−1, λn−1). We consider the KRS-like game Γhn−1,hn−1

.

Γhn−1,hn−1
= {(Ti,Ti, µi) = (I,In−1, λn−1), Ai = [−1, 1], un

i : i = 1, 2},

where un
i (a1, a2, t) = ui[a1, a2, hn−1(t)], i = 1, 2 and u1, u2 are defined in Equations (1) and (2).

Similarly, the associated private information game Γ̃hn−1,hn−1
is,

Γ̃hn−1,hn−1
= {(Ti,Ti, µi) = (I,In, λn), Ai = [−1, 1], un

i : i = 1, 2}.

For simplicity, we denote Γhn−1,hn−1
by Γ0 ◦ hn−1.

The arguments above can be illustrated by the following Figure 3.
We are now ready to summarize our argument above in the following theorem, notice that

Claims 1 and 2 above are special cases of this result.

Theorem 1 For each n ∈ N, there does not exist a pure-strategy Nash equilibrium in the KRS-like
game Γhn−1,hn−1

but there does exist in game Γ̃hn−1,hn−1
.
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Figure 3: Lebesgue extensions and KRS-like games

We conclude this section by a comment on Lebesgue extensions and private information games.
Notice that in the sequence of the Lebesgue extensions {(I,In, λn) : n = 0, 1, · · · }, for each n ∈ N,
(I,In, λn) is a countably-generated extension of (I,In−1, λn−1). However, no matter how large of
n, (I,In, λn) is still a countably-generated probability space, and thus a space with d-property.
This is to say that, if every player’s private information space is modeled by this probability space,
there always exists a KRS-like game in which there does not exist a pure-strategy Nash equilibrium.
Therefore, it is an impossible mission for one to establish a general theory of private information
games in the sense that if modeling every player’s private information space by this probability
space, there always exists a pure-strategy Nash equilibrium.

We turn next to further study of issues pertaining to such a general theory.

5 Finite-Player Games on Saturated Spaces

In contrast to the discussion so far, in this section we turn to general results on finite-player
games with both public and private information. The section is laid out in three subsections: the
first presents the formal model and its underlying assumptions, the second identifies saturated
probability spaces as sufficient for the existence of pure-strategy equilibria in such games, and the
third establishes the converse. In sum, the three theorems presented below constitute a rather
comprehensive and definitive theory.

5.1 Private and Public Information: The Model

A game with private and public information Γ consists of a finite set of ℓ players and the following
associated spaces and functions. Each player i chooses actions from a compact metric space Ai, and
the product Πℓ

j=1Aj is denoted by A. For each player i, a measurable space (Ti,Ti) represents the
private information and events known to the player but not necessarily to other players. A finite or
countably infinite set T0 = {t0p : p ∈ P} represents those states that are to be publicly announced
to all the players; denote by T0 the power set of T0. Another finite or countably infinite set S0 =
{s0q : q ∈ Q} represents the payoff-relevant common states that affect the payoffs of all the players
with S0 the power set of S0. The product measurable space (Ω,F) := (S0 × Πℓ

j=0Tj,S0 × Πℓ
j=0Tj)

equipped with a probability measure µ constitutes the information space of the game Γ.
Let µ0 be the marginal probability measure of µ on the countable set S0 × T0, and µi the
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marginal probability measure on (Ti,Ti). For each given t0p ∈ T0 and s0q ∈ S0, for simplicity, we
denote µ0({(t0p, s0q)}) by αpq. Assume that αpq > 0 without loss of generality. Let µpq denote the
conditional probability measure of µ on the space (Πℓ

j=1Tj,Π
ℓ
j=1Tj) when t0 = t0p, s0 = s0q; such a

conditional probability measure µpq always exists since both S0 and T0 are countable. Furthermore,
for each player i = 1, . . . , ℓ, let µpq

i be the respective marginal measure of µpq on the space (Ti,Ti).
This conception of information emphasizes a distinction between public and the private, as well

as that between payoff and strategy relevant. As such, it provides a blend of the treatments in
Radner-Rosenthal and Milgrom-Weber, and has been emphasized in recent work of Fu; see [8, 9, 10].
We shall need the following assumptions on the information structure, (Ω,F , µ) : the first concerns
dispersedness and the second diffusedness, both emphasized in the pioneering papers on the subject
discussed in the introduction.

Assumption 1 Given the public and payoff-relevant common information structure, T0 = {t0p :
p ∈ P}, S0 = {s0q : q ∈ Q}, for each p ∈ P , q ∈ Q, the players’ private information is conditionally
independent if

µpq = Πℓ
i=1µ

pq
i . (8)

Assumption 2 The players’ strategy-relevant private information is diffused if the marginal mea-
sure of µ on (Ti,Ti), µi, is atomless for each player i.

Next we turn to the payoffs. For each player i, his payoff function ui : A × S0 × Ti −→ R

depends on the actions chosen by all the players, a payoff relevant common state s0 ∈ S0, and on
his own private information ti ∈ Ti. We consider the following assumptions on it, principal among
which is the equicontinuity assumption made in

Assumption 3 For each player i, (i) ui(·, s0, ti) is a continuous function on A when s0 and ti
are fixed; (ii) for each a ∈ A and s0 ∈ S0, ui(a, s0, ·) is Ti-measurable on Ti; and (iii) there
is an integrable function φi on (Ω,F , µ) such that for each payoff function ui, |ui(a, s0, ti)| ≤
φi(s0, t0, t1, · · · , tℓ) holds for each a ∈ A, and each (s0, t0, t1, · · · , tℓ) ∈ Ω.

In what follows, when i is given, we shall abbreviate a product over all indices 1 ≤ j ≤ ℓ
except for j = i by Πj 6=i; i.e., Πj 6=i means Π1≤j≤ℓ,j 6=i. For each player i = 1, . . . , ℓ, we shall use the
following (conventional) notation: A−i = Πj 6=iAj . For any action profile a ∈ A = Πℓ

j=1Aj , we write
a−i for the projection of a into A−i, as a result a can be written as (ai, a−i).

We now present the concepts of the strategies. A mixed strategy for player i is a measurable
mapping from her information space (T0 × Ti,T0 ⊗Ti) to M(Ai), the space of all Borel probability
measures on the Polish space, Ai. A pure strategy is an T0 ⊗ Ti-measurable mapping from T0 × Ti

to Ai, and it can be regarded as a mixed strategy using Dirac measures. A mixed (pure) strategy
profile f = (f1, · · · , fℓ) is a tuple of mixed (pure) strategies, in which fi specifies a mixed (pure)
strategy for player i. In the sequel, for each player i and his mixed strategy fi, then for any t0, ti, let
fi(t0, ti; dai) denote the integration operator with respect to the Borel probability measure fi(t0, ti).
Therefore, given any mixed strategy profile f = (f1, · · · , fℓ), the expected payoff for player i is

Ui(f) :=

∫

Ω

∫

A

ui(a, s0, ti)f1(t0, t1; da1) · · · fℓ(t0, tℓ; daℓ) dµ(ω), (9)
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where for each t0 ∈ T0 and ti ∈ Ti, the inner integral on A is the iterated integral on Aℓ, · · · , A1

respectively. A mixed strategy profile f = (fi, f−i) is called a Nash equilibrium for the game Γ if
for every player i, Ui(fi, f−i) ≥ Ui(f

′
i , f−i) for any mixed strategy f ′i of player i.

5.2 A Sufficiency Result

Next we turn to the question of the existence of a pure-strategy equilibrium in the model presented
above. There have been two canonical ways to approach this: (i) an indirect method which shows
the existence of a mixed-strategy equilibrium, and then proceeds to show that each such equilibrium
can be “purified, (ii) a direct method which makes no reference to mixed-strategies, and unlike (i),
relies on an appropriate fixed-point theorem. The first approach was undertaken in the pioneering
papers of Radner-Rosenthal and Mligrom-Weber,35 and since [19], shown to revolve around the 1951
Dvoretsky-Wald-Wolfowitz theorem. Under the rubric of the purification of measure-valued maps, it
has been considerably generalized by Podczeck, Loeb-Sun and Wang-Zhang.36 The second approach
is due to Khan-Sun [22, 24] and does revolve around the Fan-Glicksberg fixed-point theorem applied
to a suitable space of distributions, and therefore relies on a theory of the distribution (or law) of
a set-valued random variable.37

However there is an added aspect to the theory. Radner-Rosenthal distinguished between payoff-
relevant and strategy-relevant information, while Milgrom-Weber differentiated between public and
private information, and recent work of Fu and others has considered a synthetic treatment that
incorporates both aspects of the model; see [8, 9, 10]. These distinctions necessitated an extension
of the theory of distributions from a scalar to a vector-valued measure for the direct approach: for
finite action sets in [10], and for uncountable action sets, but with information modeled as Loeb
spaces, in [29].38 We show the existence of pure-strategy equilibria through the indirect approach,
and rely on the following existence theorem for a mixed-strategy equilibrium that derives from [8,
Theorem 1].

Lemma 1 Supposed that Assumptions 1, 2 and 3 hold, then there exists a mixed strategy equilib-
rium for the game Γ.

Remark 4 As is well-known, Milgrom-Weber appealed to absolutely continuous information and
to equicontinuous payoffs to establish their existence theorem on distributional strategies.39 This

35See [33, Theorem 1], and the generalization offered in [5, Theorem 3.1]. Note that these results make no assump-
tions, as they ought not, to restrict the cardinality of the action sets.

36See [36], [28, 30]; the first and the third revolve around saturated spaces. The point of [30] is to show that the
results in [28] can be transferred from a Loeb to a saturated setting in a straightforward way, what we referred to as
the Hoover-Keisler approach in the introduction; see Footnote 12 and the text it footnotes. In [46], it is shown that
there may be an infinity of purifications of a mixed-strategy equilibrium.

37Such a theory for countably infinite action sets is presented in [22] as a direct consequence of the Bollobás-
Varopoulos extension of the marriage lemma; and for uncountably infinite sets in [24] as a consequence of a more
technically-demanding theory, also relying on the Bollobás-Varopoulos theorem, in [43].

38Indeed, the relevant mathematical framework in [29] is to establish the required properties for the distribution
of correspondences via countably infinite-dimensional vector measures, whereas [10] need only to consider finite-
dimensional vectors measures.

39In particular, the marginal probability measure of µ on (Πℓ
i=1Ti,⊗

ℓ
i=1Ti), denoted by µ′, is absolutely continuous

with respect to Πℓ
i=1µi, where µi is the marginal probability measure of µ on (Ti, Ti). Here, given two measures µ
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result is generalized in [5] by replacing the equicontinuous condition by a condition similar to our
Assumption 3. Fu [8] proved the existence of mixed strategy equilibrium by applying Theorem
3.1 of [5]. We prove Lemma 1 as a consequence of [8, Theorem 1], but we need to show that
Assumption 1 implies the absolute continuity condition. This is non-trivial and is relegated to
Section 7.

Next, we turn to the issue of purification of this mixed-strategy equilibrium. Following [19], we
define the concept of strong purification for our model.

Definition 4 A pure-strategy profile g = (g1, · · · , gℓ) is said to be a strong purification of a mixed
strategy profile f = (f1, · · · , fℓ) = (fi, f−i) if the following four conditions are satisfied for each
player i.

1. Ui(f) = Ui(g).

2. For any given mixed strategy f̃i of player i, Ui(f̃i, f−i) = Ui(f̃i, g−i).

3. For each p ∈ P and q ∈ Q, given t0 = t0p, s0 = s0q, gi(t0p, ·) and fi(t0p, ·) have the same
conditional distribution on An, i.e.,

∫

Ti
fi(t0p, ti; ·) dµpq

i (ti) = µpq
i g

−1
i (t0p, ·).

4. For all p and q ∈ Q, gi(t0p, ti) ∈ supp fi(t0p, ti) for µpq
i -almost all ti ∈ Ti.

We can now apply the purification principle based on saturated probability spaces, as in [30,
Corollary 2.3], to purify the mixed-strategy Nash equilibrium established in Lemma 1 to obtain a
pure-strategy Nash equilibrium. In particular, items 1 and 2 in Definition 4 guarantee that if the
mixed strategy f is a Nash equilibrium, so is its strong purification, thus furnishing a pure-strategy
Nash equilibrium. The result is the following.

Theorem 2 Suppose that Assumptions 1-3 hold, and for each player i, the marginal private infor-
mation space (Ti,Ti, µi) is a saturated probability space, then there exists a strong purification for
every mixed strategy in Γ. Moreover, there exists a pure-strategy Nash equilibrium in the game Γ.

Theorem 2 contributes to the literature in two different ways. On the one hand, it generalizes the
results in [29] to finite-player games with countable public information states, uncountable infinite
action sets and the private information spaces are modeled by saturated probability spaces, in which
we work with the standard measure-theoretic framework.40 On the other hand, it generalizes the
“purification principle” in [28] from a Loeb space to any saturated space. We now conclude this
section with the following remarks.

and λ on the measurable space (T, T ), µ is said to be absolutely continuous with respect to λ if for any S ∈ T with
λ(S) = 0, then µ(S) = 0.

40We note that in the context of the sufficiency theory, [17, Footnote 1] write: “In fact, the full statements of
Theorem 1 for large games and Theorem 3 for finite-player games with incomplete information in [24] can be restated
on saturated probability spaces instead of Loeb spaces; exactly the same proofs work in this more general situation.”
The point is that we present our sufficiency result in a richer setting proposed and studied in [8, 9, 10, 29], and is
technically more challenging than the one considered in [24].
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Remark 5 There is little doubt that on using the techniques in [19], and supplementing then with
the arguments developed here, Theorem 2 can be generalized to a setting pursued in [8] where each
player’s private information is divided into payoff-relevant private information and strategy-relevant
parts. We leave this to the interested reader.

Remark 6 We leave the question of a direct proof of Theorem 2 as an open problem of method-
ological interest.

5.3 A Necessity Result

Next we turn to the necessity results, the backbone of the theory that is developed and reported
in this paper. This asks what the existence of pure-strategy Nash equilibrium of each game with
private and public information chosen from a class of games implies for the space of information on
which it is modeled. In particular, given a formalization of information spaces under Assumptions 1
and 2, the assurance of a pure-strategy Nash equilibrium for a class of games whose payoff structures
satisfy Assumption 3, the marginal probability space of the information structure conditional on
any pair of public and common states must be saturated. We present two results, the first pertaining
to a simple setting where the sets P and Q of public information states are singletons. Such a result
serves as an essential input into the proof of the result for the general case.

Theorem 3 Given a finite set of ℓ players, for each player i, suppose that Ai is a uncountable com-
pact metric space. Let (Ω,F , µ) = (Πℓ

i=1Ti,⊗
ℓ
i=1Ti,Π

ℓ
i=1µi) be the information structure.41 If there

exists a pure-strategy Nash equilibrium in any private information game satisfying Assumptions 2
and 3, then (Ti,Ti, µi) must be a saturated probability space for every player i.

Finally, as implicitly brought out in its proof presented in Section 7, the necessity result in
Theorem 3 can be re-phrased in the following more powerful way.

Theorem 3′ If there exists a pure-strategy Nash equilibrium in every KRS-like game, then the
private information space for each player must be saturated probability space.

This is a more powerful result in the sense that it derives the necessity of saturation from a
hypothesis pertaining to what is apparently a limited class of games of private information.

Next we turn to a more general setting where the set of public states, as well as the common
payoff relevant states, can be of countable cardinality. We have the following result.

Theorem 4 Given a finite set of ℓ players, given two countable sets S0 and T0, for each player i,
suppose that Ai is a uncountable compact metric space. Let (Ω,F , µ) be the private information
structure satisfying Assumptions 1 and 2. If any private information game satisfying Assumption 3
has a pure-strategy equilibrium, then (Ti,Ti, µ

pq
i ) is a saturated probability space for every player i,

for any t0p ∈ T0 and s0q ∈ S0.

Remark 7 It is to be noted that the negative results stated in Section 2, and culminating in
Proposition 2 and Theorem 1, can be viewed as special cases of the above Theorems 3 and 4.

41Notice that the conditional independence mentioned in Assumption 1 is trivially satisfied.
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Indeed, in these negative results, a player’s private information is modeled either by the Lebesgue
unit interval or some countably-generated extension of the Lebesgue interval, and as such is not
saturated probability space.

The proofs of Theorem 4 is furnished in Section 7 below. Note that Theorem 3 can be viewed
as a special case of Theorem 4 simply by taking the index sets P,Q to be two singletons. The
key idea is that in a finite-player game with private information and public information, when the
pair of public information states (t0p, s0q) is announced, then by Assumption 1, conditional on such
an event, the game is reduced to a private information game with private information structure
(Πℓ

i=1Ti,⊗
ℓ
i=1Ti,Π

ℓ
i=1µ

pq
i ). If there exists a pure-strategy Nash equilibrium in each game with

private information and public information, there will also exist a pure-strategy Nash equilibrium
in each such private information game for any fixed (t0p, s0q).

6 Conclusion

In conclusion, we provide a comprehensive investigation of the fundamental insight of Radner-
Rosenthal [37] that players will restrict their attention to pure strategies when information in games
with large action spaces is sufficiently diffused. If each player’s private information is modeled by
saturated probability spaces (which is to say, spaces not satisfying the d-property), Theorem 2
shows that there always exists a pure-strategy Nash equilibrium in a broad class of games. This is
underscored by the finding in [46] that there are many pure-strategy Nash equilibria corresponding
to a single mixed-strategy equilibrium. As a result, the players have considerable incentive to re-
strict their attention to pure strategies. On the other hand, Theorems 3 and 4 make this modeling of
private information by saturated probability spaces (or again, spaces not satisfying the d-property)
more specific. If any player’s private information is modeled by a non-saturated probability space,
there is a game situation where there does not exist any pure-strategy Nash equilibrium, and as a
result, the question of the players restricting their attention to pure strategies does not arise.

The ideas behind the results can perhaps be put another way. For any game situation falling
within the class of games studied in this paper, and without a pure-strategy Nash equilibrium, it
must be the case that some player’s private information was modeled by a non-saturated probability
space. And as in Section 4, there is a more informative structure, an extension of the non-saturated
probabiity space, to overcome the negative result. However, as illustrated in Section 4, this over-
coming pertains only to the particular game that is being considered, and the hope for a general
theory for the existence of pure-strategy Nash equilibrium in this way proves fatuous. There is
always a further counterexample in which there does not exist a pure-strategy Nash equilibrium.
The underlying reason for this is simply that a non-saturated probability space, when extended by
a non-saturated one,42 remains a non-saturated space: there is simply no escape from the abyss.

42We may recall here the result of [45] in which the Lebesgue interval, when extended by a Loeb measure space,
yields a Loeb measure space.
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7 Appendix: Proofs of Results

We present four theorems in this paper, and without necessarily privileging one over the other, let
us note that from a technical point of view, the most difficult, and perhaps subtle, part of the theory
concerns the necessity results, Theorems 3 and 4. The latter is proved through a construction that
allows its hypotheses to be reduced to those of Theorem 3, and thereby invoke its conclusion. And
so we begin this Appendix on the proofs of the results by alerting the reader to the fact that
Proposition 1 pertaining to KRS-like games, and Proposition 2 to measure spaces satisfying the
d-property, while of interest in their own right, feed directly into the proof of Theorem 3, as well
in the proof of Theorem 1.

We begin with Proposition 1. As indicated above, this proposition establishes that the structure
of the equilibrium of the KRS example persists when we turn to the more general KRS-like game.
This involves a rather tedious but essential verification of the argumentation presented in [18] for
the generalized context.

Proof of Proposition 1 The claims constituting Proposition 1 are a variation (analogues) of the
combination of Claims 1 and 2 in [18]. In [18], Claim 2 is implied by Claim 1 and the proof of Claim
1 consists of a series of Lemmas and Propositions. Proposition 1 can be proved in a similar way.
Since the results in [18] were established on the usual Lebesgue unit intervals and for the game Γ0,
and Proposition 1 is on (Ti,Ti, µi), which is mapped to the usual Lebesgue interval via hi, and the
KRS-like game Γh1,h2

, a series of results in [18] need to be modified and checked for the changed
context. For this checking, we adopt the following conventions. First, we do not provide a proof of
any claim that involves re-writing from [18] with new but obvious notation. Second, we reference
the corresponding result in [18] by italics, and use � instead of when the argument is complete.

[Lemma 1] If (f∗1 , f
∗
2 ) is an equilibrium then (−f∗1 ,−f

∗
2 ) is also an equilibrium.

Proof: The proof is the same as [Lemma 1]. The only difference here is the need to replace λ◦f∗i
−1

by µi ◦ f
∗
i
−1, since f∗i is a map from Ti to [−1, 1]. �

[Proposition 2]. The best response in the game Γ̃ is made clear in Equations (4’) and (5’).

[Lemma 2] Let (f∗1 , f
∗
2 ) be an equilibrium of the game. Then, for any i = 1, 2, and any ti ∈

h−1
i ([1/2, 1]), w(hi(ti), ν

∗
i ) = 0, where ν∗i = µi ◦ f

∗−1
i on the action set [−1, 1].

Let d(t, ν) ≡ ν([t, 1]) − ν([−1,−t]), for any t ∈ [0, 1] and ν ∈ M([−1, 1]).

[Proposition 3] Let F be a measurable subset of Ti. Define a Ti-measurable function f from Ti to
[−1, 1] by f(ti) = hi(ti) if ti ∈ F and f(ti) = −hi(ti) if ti /∈ F . Let ν be the induced measure µi◦f

−1.
For any r ∈ (0, 1/2), w(r, ν) is differentiable with its derivative equal to d(r, ν). Furthermore,
w′

+(0, ν) = d(0, ν) and w′
−(1/2, ν) = d(1/2, ν) where w′

+(0, ν) and w′
−(1/2, ν) respectively denote

the right and left derivatives of w at 0 and 1/2.

Proof: Since hi induces the Lebesgue measure on [0, 1], as a result, the induced distribution of f
satisfies the following properties, ν([−t, 0]) + ν([0, t]) = ν([−t, t]) = t for any t ∈ [0, 1]. The proof
of this result is the same as that in [18]. �

[Proposition 4] Let F, f, and ν be as in Proposition 3, and 0 ≤ r < t ≤ (1/2). If the open interval
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(r, t) ⊆ hi(F ), then w(t, ν) − w(r, ν) = (t − r)[d(r, ν) − (1/2)(t − r)]. If (r, t) ∩ hi(F ) = ∅, then
w(t, ν) − w(r, ν) = (t− r)[d(r, ν) + (1/2)(t − r)].

Proof: If (r, t) ⊆ hi(F ), h−1
i ((r, t)) ⊂ F , then ν((r, t)) = µi ◦ f

−1((r, t)) = µi ◦ h
−1
i ((r, t)) = t − r.

As a result, ν((−t,−r)) = 0. The other parts are the same as in [18]. �

We now alert the reader to a more substantial departure from the argumentation in [18]. There,
the idea of a “permissible interval” is defined in terms of players, and we transfer it to equilibrium
distributions ν∗i on [−1, 1]. Accordingly, we shall say that a closed interval [r, s], r 6= s in [0, 1/2] is
permissible w.r.t., ν∗1 if w(r, ν∗1 ) = w(s, ν∗1 ) = 0 and w(t, ν∗1 ) 6= 0 and does not change sign for all
t ∈ (r, s). Two permissible intervals [r, s] and [a, b] are said to be adjacent if they have a common
endpoint, i.e, either s = a or, r = b. Two permissible intervals [r, s] and [a, b] are said to be opposite
in sign if w(t, ν∗1 )w(t′, ν∗1 ) < 0 for all t ∈ (r, s) and for all t′ ∈ (a, b). Finally, an interval [r, s] is said
to be larger than another interval [a, b] if s− r > b− a. The following results are now routine.

[Lemma 3] Let [r, s] be a positive permissible interval w.r.t. ν∗1 . Then d(r, ν∗1 ) ≥ 0 and d(s, ν∗1 ) ≤ 0.
Furthermore, (i) w(r, ν∗2 ) < 0 ⇒ d(r, ν∗1 ) > 0; (ii) w(s, ν∗2 ) < 0 ⇒ d(s, ν∗1 ) < 0.

[Lemma 4] Let [r, s] be a positive permissible interval w.r.t. ν∗1 . (i) d(r, ν∗2 ) ≥ (s− r)/2 ⇒ w(r, ν∗2 )
< 0. (ii) d(s, ν∗2 ) ≤ − (s− r)/2 ⇒ w(s, ν∗2 ) < 0.

[Lemma 5] Every permissible interval w.r.t. ν∗i has a larger adjacent permissible interval opposite
in sign.

We are now ready to prove Proposition 1. For the first statement, the proof is the same as that
in [18]. For the second part where the restricted distribution of ν∗i on [−1/2, 1/2] is the uniform
measure, as in [18], it follows from the first part and from [Proposition 3].

Proof of Proposition 2. We first prove (2) where (V,V, ν) is a countably-generated probability
space. Let h : V → [0, 1] be the map in Fact 7 where certain isomorphism between the measure
algebra of the Lebesgue unit interval and the measure algebra (V,V, ν) is realized by h.

We next show by contradiction that there does not exist a V-measurable selection of the d-
correspondence v ։ {h(v),−h(t)} such that the induced distribution is the uniform measure on
[−1, 1]. Suppose not, let g : V → [−1, 1] be such a selection of the d-correspondence. Let W = {v ∈
V : g(v) = h(v)} and it is clear that W ∈ V. Since the map h induces an isomorphism between the
measure algebras of the Lebesgue unit interval and the measure algebra (V,V, ν), by [26, Corollary
1], there exists a L-measurable subset S of [0, 1] with ν[W∆h−1(S)] = 0.

Now define ψ : [0, 1] → [−1, 1] by letting ψ(t) = t, if t ∈ S and −t if t ∈ [0, 1]\S. By definition, ψ
is a L-measurable mapping. For any a ∈ [0, 1], we next show that ηψ−1(0, a) = ηψ−1(−a, 0) = a/2.
Indeed we can verify the the first part ∀a ∈ [0, 1] as follows:

ηψ−1(0, a) = η((0, a) ∩ S) = ν[h−1((0, a) ∩ S)] (since νh−1 = η)

= ν[h−1(0, a) ∩ h−1(S)] = ν[h−1(0, a) ∩W ] (since ν[W∆h−1(S)] = 0)

= νg−1(0, a) = a/2. (as a result of the definitions of S and g)

Similarly, we can show that ηψ−1(−a, 0) = a/2 for any a ∈ [0, 1]. As a result, ψ is a Lebesgue
measurable mapping whose induced distribution is uniform in [−1, 1]. This contradicts [26, Claim 2].
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When restricted to h−1([0, 1/2]), the subspace of (V,V, ν) is still a countably-generated measure
space, and we can show that the restricted d-correspondence does not have measurable selection
which induces the uniform measure on [−1/2, 1/2]. Therefore, the countably-generated probability
space (V,V, ν) has the d-property, and the map h is a witness of the d-property.

We next prove Part (1) where (V,V, ν) is not a saturated probability space. Since (V,V, ν) is not
a saturated probability space, it follows from Definition 1 that there exists a V-measurable subset
W ⊆ V with ν(W ) > 0 (denoted ν(W ) by s) such that the restricted measure space (W,VW , ν) is
countably-generated, where VW is the σ-algebra of V restricted to W . As a result of Maharam’s
theorem (see [31]), the measure algebra of ([0, s],Ls, η) is isomorphic to the measure algebra of
(W,VW , ν), where Ls is the σ-algebra of all Lebesgue sets on [0, s]. According to Fact , this
isomorphism can be realized by a measure preserving map hW from (W,VW , ν) to ([0, s],Ls, η).
We now consider the measure space restricted to V \W , the complementary set for W in V . Since
it is also an atomless measure space, by [17, Lemma 2.1] again, there exists a measurable map
hV \W : V \W → [s, 1] such that the induced distribution of hV \W on [s, 1] is the Lebesgue measure
on [s, 1]. Let h1 be a map from (V,V, ν) to the Lebesgue interval defined as follows,

h(v) =

{

hW (v), if v ∈W ;

hV \W (v), if v ∈ V \W.
(10)

It is clear that h is a V-measurable map and the induced distribution of h is the Lebesgue measure η,
i.e., h ∈ L(V,V ,ν).

We next show that the map h constructed as above is a witness of the d-property for the
probability space (V,V, ν). That is, there does not exist a V-measurable selection of the associated
d-correspondence, v ։ {h(v),−h(v)}, for all v ∈ V such that the induced distribution of this
selection is uniform on [−1, 1]. Suppose not, consider the restriction of the d-correspondence to W ,
there is a measurable selection of the restricted correspondence such that this selection induces the
uniform measure on [−s, s]. It is a contradiction to the assertion of Part (2). Similarly, there does
not exist a measurable selection of the correspondence, when restricted to h−1([0, 1/2]), such that
this selection induces the uniform measure on [−1/2, 1/2]. Therefore, the non-saturated probability
space (V,V, ν) has the d-property, and the map h is a witness of the d-property.

Finally, we provide the proof of Part (3). Let h be an arbitrary map from the saturated
probability space (V,V, ν) to the Lebesgue unit interval where the induced distribution of h is
unform on the interval. Consider the d-correspondence, denote it by Ψ, Ψ(v) = {h(v),−h(v)}
for all v ∈ V . Let DΨ be the set of induced distributions of the V-measurable selections of Ψ.
Namely, both h and −h are selections of Ψ and they induce the uniform distribution on [0, 1] and
[−1, 0] respectively. By [17, Theorem 3.6, P(2)], DΨ is a convex set. As a result, the uniform
measure on [−1, 1], which is equal to the sum of half the uniform measure on [−1, 0] and half the
unform measure on [0, 1], is an element of DΨ. Hence, there exists a selection of Ψ which induces
the uniform distribution of [−1, 1]. Therefore, any map h ∈ L(V,V ,ν) can not be a witness of the
d-property, that is, the saturated probability space does not have the d-property at all.

Lemma 2 There exists an In-measurable map g∗n : (I,In, λn) → [−1, 1] such that g∗n(t) is either
hn−1(t) or −hn−1(t) for any t ∈ I and it induces the uniform distribution on [−1, 1].
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Proof. Before proving this Lemma, as in [26], we first define a sequence of correspondences
based on hn. Let Ψ : (I,L, η) ։ [−1, 1] be a correspondence such that Ψ(t) = {t,−t} for
any t ∈ I. Now define Ψn : (I,In−1, λn−1) ։ [−1, 1] by Ψn = Ψ ◦ hn−1, that is, for any t ∈ I,
Ψn(t) = {hn−1(t), hn−1(t)}. In a word, Ψn is the associated d-correspondence of the mapping hn−1.
Moreover, let DΨ(η) be the set of induced distributions of all Lebesgue measurable selections of Ψ
and DΨ(λ) be the set of induced distributions of all I-measurable selections of Ψ. Similarly, denote
by DΨn(λn) the set of induced distributions of all In-measurable selections of Ψn.

Let ν∗ be the uniform distribution on [−1, 1]. For any n ∈ N, ν∗ ∈ DΨ(λ) = DΨn(λn) and
DΨn(λn) is both convex and closed; see Section 5.2 for details. That is, there is an In-measurable
map g∗n : (I,In, λn) → [−1, 1] such that g∗n(t) is either hn−1(t) or −hn−1(t) for any t ∈ I and it
induces the uniform distribution on [−1, 1].

Note that Theorem 1 is proved as a direct consequence of Proposition 2.

Proof of Theorem 1. First, we show that there does not exist any pure-strategy Nash equilibrium
in the KRS-like game Γhn−1,hn−1

for each n ≥ 0, where

Γhn−1,hn−1
= {(Ti,Ti, µi) = (I,In−1, λn−1), Ai = [−1, 1], un

i : i = 1, 2}.

This follows from Proposition 1 and the fact that hn−1 is a witness of the d-property for the
Lebesgue extension (I,In−1, λn−1), as stated in Proposition 2 (2).

Next we prove the positive results for

Γ̃hn−1,hn−1
= {(Ti,Ti, µi) = (I,In, λn), Ai = [−1, 1], un

i : i = 1, 2}.

By Lemma 2, there exists such an In-measurable selection g∗n such that the value of g∗n(t) is either
hn−1(t) or −hn−1(t) for any t ∈ I, and the induced distribution of g∗n is the uniform distribution
λn(g∗n)−1 = ν∗ over [−1, 1].

We complete the proof by showing that (g∗n, g
∗
n) is a pure-strategy Nash equilibrium of Γ̃n.

Indeed, the conditions in Proposition 1 are satisfied. For player 1, given player 2’s strategy g∗n with
the induced distribution ν∗ on [−1, 1], then w(hn−1(t), ν

∗) = 0 for any t. As a result, from the
best response correspondence as in Equations (4’) and (5’), at any private information t, player 1’s
action g∗n(t), which is either hn−1(t) or −hn−1(t), is a best response for player 1. Similarly, we can
show that given player 1’s strategy g∗n, for player 2, his action g∗n(t) as specified in the strategy g∗n
at any information t ∈ I is also the best response. Therefore, (g∗n, g

∗
n) is a pure-strategy Nash

equilibrium for Γ̃n.

Proof of Lemma 1. This result follows from Theorem 1 of [8]. The model in [8] is a little different
with ours. In particular, each player’s private information therein consists of two parts, one part
is the strategy-relevant private information on which the player can choose different actions, the
other part is the payoff-relevant private information which may influence the player’s payoff. In
our model, we work on the special case where the payoff-relevant part shrinks to a singleton set.

Next we show that there exists a mixed strategy equilibrium in our model. Theorem 1 of [8]
guarantees the existence of mixed strategy equilibrium for any incomplete information game which
satisfies two conditions, one is about the regularity properties about the payoff functions as de-
scribed in Assumption 3, the other is about the absolute continuity about the marginal probability
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measures of µ, denote this condition by (C2). In particular, the marginal probability measure of µ
on (Πℓ

i=1Ti,Π
ℓ
i=1Ti), denoted by µ′, is absolutely continuous with respect to Πℓ

i=1µi, where µi is the
marginal probability measure of µ on (Ti,Ti).

We finally claim that Assumption 1 implies the condition (C2). Therefore, the existence of the
mixed strategy equilibrium follows from Theorem 1 of [8]. We complete the proof of this lemma
by providing a proof of the above claim. That is, for any S ∈ Πℓ

i=1Ti with Πℓ
i=1µi(S) = 0, we have

µ′(S) = 0. Towards this end. Recall that T0 = {t0p : p ∈ P}, S0 = {s0q : q ∈ Q} are both countable
sets, and µ0(t0p, s0q) = αpq > 0 for any p, q. Note that,

µi =
∑

p∈P

∑

q∈Q

αpqµ
pq
i , for all i = 1, · · · , ℓ, (11)

µ′ =
∑

p∈P

∑

q∈Q

αpqµ
pq. (12)

Fix i. Since that Πℓ
i=1µi(S) = 0, it follows from Fubini Theorem that there exists S′ ∈

⊗

j 6=i Tj

such that (1) Πj 6=iµj(S
′) = 1; and (2) for any t−i ∈ S′, the t−i section of S, denoted by St−i

= {ti :
(ti, t−i) ∈ S}, is Ti-measurable and µi(St−i

) = 0. For any t−i ∈ S′, it follows from Equation (11)
that µpq

i (St−i
) = 0 for all p, q. We next show that Πj 6=iµ

pq
j (S′) = 1 for any p, q. Indeed,

Πj 6=iµj(S
′) = 1 ⇒

(

Πj 6=i(Σp∈P Σq∈Qαpqµ
pq
j )

)

(S′) = 1 (∵ (11))

⇒
∑

pj∈P,j 6=i

· · ·
∑

qj∈Q,j 6=i
︸ ︷︷ ︸

2(ℓ−1) Σs

(

Πj 6=iαpjqj
Πj 6=iµ

pjqj

j (S′)
)

= 1

⇒ Πj 6=iµ
pjqj

j (S′) = 1,∀pj, qj , j 6= i, (13)

this is because
∑

pj∈P,j 6=i · · ·
∑

qj∈Q,j 6=i Πj 6=iαpjqj
= 1 and Πj 6=iµ

pjqj

j (S′) ≤ 1,∀pj , qj, j 6= i. Espe-

cially, let pj = p, qj = q for all j 6= i, we have that Πj 6=iµ
pq
j (S′) = 1 for all p, q. As a result, for

any p, q, µpq(S) = Πℓ
i=1µ

pq
i (S) =

∫

S′ µ
pq
i (St−i

)dΠj 6=iµ
pq
j = 0, where the first equation follows from

Assumption 1 and the second from Fubini Theorem. Therefore µ′(S) =
∑

p,q αpqµ
pq(S) = 0 by

Equation (12).

For our next result, we borrow the following lemma from [30, Corollary 2.3].

Lemma 3 Let (T,T , µ) be a saturated probability space, and A be a Polish space associated with
the Borel algebra BA. K,J are two sets with finite or countably infinite elements. For each k ∈ K,
let µk be a finite signed measure on (T,T ) that is absolutely continuous with respect to µ. For each
j ∈ J , let ψj : A×T → R is a function such that (1) for any fixed t, ψj(t, ·) is continuous on A; (2)
for any a, ψj(·, a) is T -measurable and there exists a µ-integrable function φj with |ψj(·, a)| ≤ φj

for all a ∈ A. If f is a T -measurable mapping from T to M(A), then there is a T -measurable
mapping g from T to A such that,

1.
∫

T

∫

A
ψj(t, a)f(t; da)µk(dt) =

∫

T
ψj(t, g(t))µk(dt), for all k ∈ K, j ∈ J ;

2.
∫

T
f(t)(B)µk(dt) = µk

(
g−1[B]

)
, for all k ∈ K and all B ∈ BA;
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3. g(t) ∈ supp f(t) for µ-almost all t ∈ T .

In what follows, we call that the map g : T → A is a purification of the measure-valued mapping f :
T → M(A).

Proof of Theorem 2. Here is a road map of our proof. We first show that for any mixed strategy
profile in the game Γ satisfying the conditions in the statement, there exists a strong purification.
Next, notice that a saturated probability space is naturally an atomless probability space, thus
Assumption 2 holds trivially. Lemma 1 implies that there always exists a mixed-strategy Nash
equilibrium in the game Γ. Finally, by the definition of strong purification (see Definition 4), a
strong purification of the mixed strategy equilibrium above is a pure-strategy Nash equilibrium of
the game Γ. Therefore we only need to verify the first part, i.e., there exists a strong purification
for any mixed strategy profile in the game Γ.

Recall the information structure in this game is (Ω,F , µ) = (S0 ×Πℓ
j=0Tj,S0 ⊗Πℓ

j=0Tj, µ). For
any p ∈ P and q ∈ Q, µ0({(t0p, s0q)}) = µ({(t0p, s0q)} × T ) = αpq > 0. According to the condition-
ally independence, Assumption 1, we have µpq = µ(· |t0p, s0q) = Πℓ

i=1µ
pq
i for each p ∈ P, q ∈ Q. As

a result, for any player i and any Ti-measurable subset Si, µi(Si) =
∑

p∈P

∑

q∈Q αpqµ
pq
i (Si). Thus

each µpq
i is absolutely continuous with respect to µi.

Assume that f = (f1, · · · , fℓ) is a mixed strategy profile of the game Γ. That is, for any
player i, fi is a measurable mapping from T0×Ti to M(Ai), the space of Borel probability measures
on the action space Ai. Fix player i. Her expected payoff Ui(f) in this mixed strategy profile f as
defined in Equation (9) can be written as follows, note that T = Πℓ

j=1Tj , A = Πℓ
j=1Aj,

Ui(f) =

∫

Ω

∫

A

ui(a, s0, ti)f1(t0, t1; da1) · · · fℓ(t0, tℓ; daℓ) dµ(ω)

=
∑

p∈P

∑

q∈Q

αpq

∫

T

∫

A

ui(s0q, ti, a) Πℓ
j=1fj(t0p, tj; daj) dµpq

=
∑

p∈P

∑

q∈Q

αpq

∫

T

∫

A

ui(s0q, ti, a) Πℓ
j=1fj(t0p, tj; daj) Πℓ

j=1dµ
pq
j (tj)

=
∑

p∈P

∑

q∈Q

αpq

∫

Ti

∫

Ai

vf
ipq(ti, ai)fi(t0p, ti; dai)µ

pq
i (dti), (14)

where

vf
ipq(ti, ai) =

∫

T−i

∫

A−i

ui(s0q, ti, ai, a−i) Πj 6=ifj(t0p, tj ; daj) Πj 6=idµ
pq
j (tj). (15)

Conditional on the event t0 = t0p, s0 = s0q, let γ
fj

jpq be the induced probability distribution of fj

on Aj for player j, j = 1, · · · , ℓ. That is, for any Borel subset Bj of Aj ,

γ
fj

jpq(Bj) =

∫

Tj

fj(t0p, tj)(Bj)dµ
pq
j (tj). (16)

Consequently, we have the following equation,

vf
ipq(ti, ai) =

∫

A−i

ui(s0q, ti, ai, a−i) dΠj 6=iγ
fj

jpq. (17)
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Equations (14) and (17) imply that, conditional on the event t0 = t0p, s0 = s0q, player i’s expected

payoff depends on the actions of the other players only through γ
fj

jpq, j 6= i, the induced conditional
distributions of their strategies on their action spaces.

For the fixed player i and the fixed mixed strategy profile f , since player i’s payoff function ui

satisfies Assumption 3, it is clear that for each p, q, vf
ipq(ti, ai) defined in Equation (15) satisfies

the following conditions: (1) for any ti ∈ Ti, v
f
ipq(ti, ·) is continuous in Ai, (2) for any ai ∈ Ai,

vf
ipq(·, ai) is Ti-measurable on Ti, and (3) |vf

ipq(ti, ai)| ≤
∫

T−i
φi(s0q, t0p, ti, t−i)Πj 6=idµ

pq
j (tj) since

|ui(a, s0, ti)| ≤ φi(s0, t0, ti, t−i) holds for each a ∈ A. Therefore, we can apply Lemma 3 to
the following parameters to obtain a purification for the measure-valued mapping fi(t0p, ·) for
each p ∈ P ,

[

(Ti,Ti), {µ
pq
i }q∈Q, Ai, {v

f
ipq}q∈Q, fi(t0p, ·)

]

In particular, for any p ∈ P , there exists a Ti-measurable map gp
i : Ti → Ai with the following

properties,

(i)
∫

Ti

∫

Ai
vf
ipq(ti, ai)fi(t0p, ti; dai)µ

pq
i (dti) =

∫

Ti
vf
ipq[ti, g

p
i (ti)]µ

pq
i (dti), for any q ∈ Q;

(ii) for any Borel set Bi ⊆ Ai and q ∈ Q, γfi

ipq(Bi) =
∫

Ti
fi(t0p, ti)(Bi)µ

pq
i (dti) = µpq

i

(
(gp

i )−1[Bi]
)
;

(iii) gp
i (ti) ∈ supp fi(t0p, ti) for µi-almost all ti ∈ Ti.

In the above arguments, since the choice of i and p are arbitrarily, then the arguments can
be applied for all i = 1, · · · , ℓ and p ∈ P . Fix gp

i : Ti → Ai to be a purification with the above
properties (i)-(iii) of the measure-valued mapping fi(t0p, ·) : Ti → M(Ai) for each i, p ∈ P . Denote
by gi : T0 × Ti → Ai the map defined as gi(t0p, ti) = gp

i (ti) for any p ∈ P . Note that it is a pure
strategy for player i. Let g = (g1, · · · , gℓ), it is clear a pure-strategy profile.

Finally, we claim that the above pure-strategy profile g is a strong purification of mixed strategy
profile f . That is, it satisfies Items 1-4 in Definition 4. It is clear that the Items 3 and 4 are the
above Assertions (ii) and (iii) respectively. We only need to prove Items 1 and 2 in the definition.
Towards this end, for any mixed strategy f̃i of player i, let f̃ = (f̃i, f−i), and g̃ = (f̃i, g−i). By
Equation (17), the expected payoff of player i with f̃ and g̃ are respectively given by

Ui(f̃) =
∑

p∈P

∑

q∈Q

αpq

∫

Ti

∫

Ai

vf̃
ipq(ti, ai)f̃i(t0p, ti; dai)µ

pq
i (dti), (18)

Ui(g̃) =
∑

p∈P

∑

q∈Q

αpq

∫

Ti

∫

Ai

vg̃
ipq(ti, ai)f̃i(t0p, ti; dai)µ

pq
i (dti). (19)

By the definition of the strategy profiles f̃ and g̃, f̃−i = f−i and g̃−i = g−i. As a result,

for any j 6= i, p ∈ P and q ∈ Q, by the definition of γ
fj

jpq in Equation (16), γ
f̃j

jpq = γ
fj

jpq and

γ
gj

jpq = γ
g̃j

jpq. By Assertion (ii) above γ
fj

jpq = γ
gj

jpq for all j 6= i, p and q. Hence by the definition

of vf
ipq in Equation (15), vf̃

ipq(ti, ai) = vf
ipq(ti, ai) = vg

ipq(ti, ai) = vg̃
ipq(ti, ai). Therefore, it follows by
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Equations (18) and (19) that Ui(f̃) = Ui(g̃). We thus proved Item 2 in Definition 4. The properties
in Item 1 can also be obtained in a similar way. In fact,

Ui(g) =
∑

p∈P

∑

q∈Q

αpq

∫

Ti

vg
ipq(ti, g

p
i (ti))µ

pq
i (dti)

=
∑

p∈P

∑

q∈Q

αpq

∫

Ti

vf
ipq(ti, g

p
i (ti))µ

pq
i (dti)

= Ui(f),

where the second equation follows from Assertion (ii) above. Therefore we complete the proof that
the pure-strategy profile g is a strong purification of the mixed strategy profile f .

Proof of Theorem 3. Without loss of generality, suppose that the private information space
for player 1, (T1,T1, µ1), is an atomless but not a saturated probability space. By Part (1) of
Proposition 2, it is a space satisfying the d-property. As mentioned in Remark 2, to construct a
ℓ-player game with the given information structure and the uncountable compact matric spaces
Ai but without pure-strategy Nash equilibrium, one need only consider a simpler game with two
players, players 1 and 2 and with A1 = A2 = [−1, 1].

Because (T1,T1, µ1) is a space satisfying the d-property, let h1 be one witness map of the d-
property for the space and the subspace restricted to h−1

1 ([0, 1/2]). Meanwhile, since (T2,T2, µ2)
is an atomless probability space, it is a known result that there always exists a T2-measurable
mapping h2 from (T2,T2, µ2) to the Lebesgue interval such that it induces the Lebesgue measure
on the interval.

Now we consider the KRS-like game Γh1,h2
,

Γh1,h2
= {(Ti,Ti, µi), Ai = [−1, 1], ũi : i = 1, 2},

where ũi is defined in Equations (6) and (7). It is clear that the payoff functions ũi, i = 1, 2, · · · , ℓ
satisfy Assumption 3 since ui, i = 1, 2 defined in Equations (1) and (2) satisfy this Assumption and
hi are Ti-measurable mappings.

Suppose that there exists a pure-strategy Nash equilibrium (g∗1 , g
∗
2) for the KRS-like game Γh1,h2

.
Then by the best response correspondences as in Equations (4’) and (5’), g∗1 must be a selection
of the d-correspondence {h1(t1),−h1(t1)}, and the induced distribution of g∗1 , when restricted to
h−1

1 (0, 1/2) is uniform on [−1/2, 1/2]. This contradicts the fact that h1 is a witness of the d-property
of (T1,T1, µ1).

Proof of Theorem 4. Suppose that for some t0p ∈ T0 and s0q ∈ S0, (Ti,Ti, µ
pq
i ) is a not saturated

probability space for some player i. In the information structure (Ω,F , µ), for t0 = t0p, s0 = s0q,
recall that αpq = µ0({(t0p, s0q)}) > 0 and µpq is the conditional probability measure of µ on
(Πℓ

j=1Tj ,Π
ℓ
j=1Tj) when t0 = t0p, s0 = s0q.

Now consider a private information game Γ with the above information structure and the payoff
functions and for any q′ 6= q,

ui(s0q′ , a, ti) ≡ 0, for all a = (ai, a−i) ∈ A, ti ∈ Ti, and player i. (20)
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Notice that the payoff functions specified in Equation (20) for other q′ 6= q satisfy the conditions
in Assumption 3 trivially. Moreover, if ui(s0q, ·, ·) for any player i also satisfies the conditions
in Assumption 3, then the payoff structure in game Γ has the properties specified in Assump-
tion 3. Thus, Assumptions 1-3 are satisfied in game Γ in this case. As a consequence, if for each
player i, ui(s0q, ·, ·) satisfies the conditions in Assumption 3, it follows from the assumption of this
theorem that there exists a pure-strategy Nash equilibrium in game Γ.

We next characterize the pure-strategy Nash equilibrium in the game Γ above. Assume that
g∗ = (g∗1 , · · · g

∗
ℓ ) is pure-strategy Nash equilibrium in Γ, where for each player i, g∗i : T0 × Ti → Ai

is a T0 ⊗ Ti-measurable mapping. For simplicity, denote g∗i (t0p′ , ·) by g∗p
′

i for each p′ ∈ P and
write g∗i as (g∗pi , g

∗−p
i ). By Equation (9), the expected payoff for player i in the pure-strategy

equilibrium g∗ is,

Ui(g
∗) = Ui(g

∗
i , g

∗
−i) =

∑

p′∈P

∑

q′∈Q

αp′q′

∫

T

ui(s0q′ , ti, g
∗p′

i (ti), g
∗p′

−i (t−i)) dµp′q′

=
∑

p′∈P

αp′q

∫

T

ui(s0q, ti, g
∗p′

i (ti), g
∗p′

−i (t−i)) dµp′q. (21)

where the last equation holds because of Equation (20). By the definition of pure-strategy equilibria,
for any player i, for any pure-strategy ḡi : T0 × Ti → Ai, we have Ui(g

∗
i , g

∗
−i) ≥ Ui(ḡi, g

∗
−i); that is,

∑

p′∈P

αp′q

∫

T

ui(s0q, ti, g
∗p′

i (ti), g
∗p′

−i (t−i)) dµp′q ≥
∑

p′∈P

αp′q

∫

T

ui(s0q, ti, ḡ
p′

i (ti), g
∗p′

−i (t−i)) dµp′q. (22)

Given game Γ and the fixed p ∈ P, q ∈ Q, let Γpq be the following private information game
with a single pair of common states t0p, s0q,

Γpq = {(Ti,Ti), Ai, ui(s0q, ·), i = 1, · · · , ℓ, µpq}.

According to Assumption 1, µpq = Πℓ
i=1µ

pq
i . As a result, the private information structure for the

game Γpq is the product probability space (Πℓ
i=1Ti,Π

ℓ
i=1Ti,Π

ℓ
i=1µ

pq
i ).

The relation between the pure-strategy Nash equilibria in the games Γ and Γpq is as follows.
If there exists a pure-strategy Nash equilibrium in the game Γ, then there exists a pure-strategy
Nash equilibrium in game Γpq. In particular, assume that g∗ = (g∗1 , · · · g

∗
ℓ ) is a pure-strategy Nash

equilibrium in Γ, then g∗p = (g∗p1 , · · · g
∗p
ℓ ) is a pure-strategy Nash equilibrium in game Γpq. In fact,

for each player i and any pure-strategy gp
i : Ti → Ai, let g′i = (gp

i , g
∗−p
i ). It is clear that g′i is

a pure-strategy for player i in game Γ. Applying the inequalities in (22) by replacing player i’s
strategy by g′i in the right hand side, notice that αpq > 0, we have that

∫

T

ui(s0q, ti, g
∗p
i (ti), g

∗p
−i(t−i)) dµpq ≥

∫

T

ui(s0q, ti, ḡ
p
i (ti), g

∗p
−i(t−i)) dµpq.

Since gp
i is an arbitrary pure-strategy of an arbitrary player i in game Γpq, therefore the pure-

strategy profile g∗p = (g∗p1 , · · · g
∗p
ℓ ) is a pure-strategy Nash equilibrium for game Γpq.

We are now ready to complete the proof of this theorem. Take the following terms as given, a
finite set of ℓ players, two countable sets S0 and T0, uncountable compact metric spaces Ai, and
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the private information structure (Ω,F , µ) which satisfies Assumptions 1 and 2. Let Γ′pq be a
private information game with the private information structure (T,T , µpq = Πℓ

i=1µ
pq
i ) and action

spaces Ai, i = 1, · · · , ℓ, suppose that the payoff functions ui satisfies Assumption 3. Then we can
extend Γ′pq to be a private information game Γ′ with the private information structure (Ω,F , µ)
by defining the payoff functions at other t0p′ , p

′ 6= p as in Equation (20). It is clear that this
game Γ′ satisfies Assumptions 1-3, and it follows from the hypotheses of the theorem that there
always exists a pure- strategy Nash equilibrium in Γ′. Moreover, due to the arguments above, there
also exists a pure-strategy Nash equilibrium in the game Γ′pq. Then, according to Theorem 3, the
private information space of player i, (Ti,Ti, µ

pq
i ), must be a saturated probability space. Thus we

complete the proof of this theorem.
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