
Limited enforcement, bubbles and trading in incomplete

markets ∗

Camelia Bejan† Florin Bidian ‡§

May 29, 2013

Abstract

We show that a large class of rational bubbles relax consumers’ debt limits. The

collapse of a bubble amounts to a contraction of credit, and conversely, a bubble can

arise to supplement the credit available in the economy. As a by-product, however,

bubbles can cause large increases in trading volume, volatile asset prices and high and

time-varying Sharpe ratios.
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1 Introduction

Episodes of large stock market run-ups followed by abrupt crashes, without apparent similar

movements in fundamentals, are referred to as bubbles. They are typically accompanied by

large increases in trading volume (Cochrane 2002). Formally, a (rational) bubble is defined
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as the price of an asset in excess of its fundamental value, computed as the discounted (at

market rates) present value of dividends.

We show that an intrinsic property of a large class of rational bubbles is their capacity

to relax the debt limits of the agents. Any bubble that preserves the set of deflators (or

the asset span) is effectively equivalent (from the point of view of allocations) with an

appropriate relaxation of debt limits, proportional with the size of the bubble. Thus the

collapse of a bubble amounts to a contraction of agents’ debt limits, and conversely, a

bubble can arise to supplement the credit available in the economy. Even when comparing

a bubbly economy to the equivalent bubble-free economy with relaxed debt limits, bubbles

distort trading volumes and asset returns.

We build on the insight of Kocherlakota (2008), who showed that arbitrary discounted

(by the pricing kernel) positive martingales can be introduced into asset prices as bubbles,

while leaving agents’ consumption and the pricing kernel unchanged, as long as the debt

constraints of the agents are allowed to be adjusted upwards by their initial endowment of

the assets multiplied with the bubble term. The introduction of a bubble gives consumers

a windfall proportional to their initial holding of the asset, which can be sterilized, leaving

their budgets unaffected, by an appropriate tightening of the debt limits. The modified

debt constraints bind in exactly the same dates and states. Kocherlakota (2008) refers

to this result as “the bubble equivalence theorem”, and to this technique of introducing

bubbles as “bubble injections”.

A major limitation of Kocherlakota’s (2008) result is the assumption that agents can

trade in a full set of state-contingent claims to consumption next period, in addition to the

existing long-lived securities. Hence one might infer that bubble injections are associated to

knife-edge situations, and they might not apply to incomplete markets environments or even

to economies with dynamically complete markets (rather than Arrow-Debreu complete).

Moreover, as explained below, in the presence of redundant assets, the effect of bubble

injections on trading volumes is not a well-posed problem. Therefore his result cannot

justify the increases in stock market trading volume associated with the presence of bubbles.

We prove that the bubble equivalence theorem holds even when markets are incomplete,

or only dynamically complete. We characterize completely the set of processes that can

be injected as bubbles in asset prices. We show that any process with a positive rate of

growth equal to the gross return of some trading strategy can be introduced as a bubble in

asset prices, if it does not decreases the asset span. This “drop in rank” of the asset span

does not occur generically, therefore the set of potential bubbles is very large. The result
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works also in reverse, generically any economy having a bubble (in some asset) which has

a rate of growth equal to the return of a trading strategy is equivalent with a bubble-free

economy if debt limits are relaxed in proportion to the size of the bubble.

It follows that, for general environments, an unexpected bubble collapse would not

affect agents’ consumption if their debt limits are relaxed by an amount proportional to

the size of the bubble. In the absence of such an increase in the availability of credit, a

bubble collapse amounts to a credit crunch, and therefore can be contractionary (see, for

example, Guerrieri and Lorenzoni 2011).

The bubble equivalence theorem has additional appeal in environments with endoge-

nous debt limits, as in Alvarez and Jermann (2000). In these models, agents have the

option to default on debt and receive a predetermined continuation utility, and the mar-

kets (competitive financial intermediaries) select the largest debt limits so that repayment

is always individually rational given future bounds on debt. It turns out that the tighter

debt limits required to sustain a bubble injection are again the endogenous bounds allowing

for maximal credit expansion and preventing default. We allow for more general punish-

ments after default than in Kocherlakota (2008). In particular, we cover the case where

upon default the agents are forbidden to carry debt (Bulow and Rogoff 1989, Hellwig and

Lorenzoni 2009).

We analyze next the trading volume effects of bubbles. In light of the bubble equiva-

lence theorem, it is not surprising that a bubbly economy allows for more trade than an

economy without bubbles and identical debt limits, as the bubble effectively expands the

debt limits of the agents and increases the risk-sharing opportunities. However, we com-

pare the trading volumes in an economy with bubbles and the equivalent (from the point of

view of allocations) bubble-free economy with more relaxed debt limits. In this comparison,

bubbles are kept “neutral” from the point of view of allocations, but nevertheless bubbly

economies can display larger trading volumes, as agents adjust their portfolios in response

to a bubble injection. Therefore even bubble injections in zero-supply assets, which create

no wealth effects and do not affect agents’ debt limits, can generate increases in trading

volume. Such portfolio effects are impossible to quantify unambiguously in Kocherlakota

(2008), as bubble-carrying stocks are redundant assets. Indeed, one can arrange the equi-

librium portfolios such that there is no additional trade in the redundant stocks after a

bubble injection and all portfolio adjustments are done via Arrow securities (this is what

Kocherlakota (2008) does), but equivalently, one could have arbitrary amounts of trading

in stocks by appropriately adjusting the holdings of Arrow securities.
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In Section 2, we illustrate the expansionary effects of bubbles, as well as their effect on

trading volume, in a Bewley style, deterministic economy, with elastic labor supply. The

example is an extension of the one analyzed in Kocherlakota (2011), or alternatively, can

be viewed as a tractable particular case of the model studied computationally in Guerrieri

and Lorenzoni (2011). We show that a tightening of the debt limits results in a contraction

of output, consumption, real interest rates, trade and welfare. When the agents have access

to fiat money, in addition to Arrow securities, a bubble (valued money) of appropriate size

matching the size of the contraction in debt limits effectively prevents the recessionary

effects of the credit crunch. The bubble creates no additional trade in the Arrow securities

and in money, compared to the equilibrium without the bubble and initial (pre-credit

crunch) debt limits. By replacing the fiat money with a dividend paying asset (hence with

non-zero intrinsic value), the Arrow securities are not needed anymore to enable trade

in the absence of a bubble, as the asset dynamically completes the markets. Now the

readjustment in agents’ portfolios in response to the bubble injection leads to increases in

the trading volume. When the dividends of the asset go to zero, thus approaching the fiat

money case, the volume of trade doubles (in the limit).

A bubble injection unambiguously increases the trading volume in dynamically com-

plete markets economies with Markov endowments and non-binding borrowing constraints.

In these environments, Judd, Kubler, and Schmedders (2003) show that there is no trade

in stocks (for a generic set of dividends), after an initial portfolio rebalancing. A bubble in

one asset now distorts agents’ portfolios and can create trading in all of the assets. Trade

can be absent in a bubble-free equilibrium in environments more general than those cov-

ered by Judd, Kubler, and Schmedders (2003), as long as the equilibrium remains Pareto

optimal (hence the debt limits do not bind). We illustrate this in the example in Section

C, where we allow for incomplete markets and alternative debt limits, and show that a

bubble creates persistent (bounded away from zero) trading volume.

For a quantitative exploration of the trading volume effects of bubble injections, and

to show that volume effects are also present when debt constraints bind, we consider the

limited enforcement economy of Alvarez and Jermann (2001). They make a compelling em-

pirical case for the improved asset pricing performance of models with limited enforcement

in a stochastic economy with two-agents, complete markets and an interdiction to trade as

penalty for default. We substitute the Arrow securities with long-lived assets that dynam-

ically complete the markets and show that bubbles (deterministic or stochastic) increase

the trading volume. Small initial bubbles (0.1% of GDP) can generate large increases in
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trading volume (up to 8% of GDP) each period while they run. They also generate large

drops in trade volume upon their collapse. When the bubble crashes after a long run, the

volume of trade reduces roughly by half (drop of 16% of GDP). There are “contagion”

effects, as a bubble in one asset boosts the trading volume also in the other asset.

A bubble injection in an asset also distorts the price and the return on the asset,

which becomes a weighted average between the fundamental return of the asset and the

bubble growth rate. The weight of the fundamental return in the bubbly return is just

the ratio of fundamental value to the bubble inflated price. We show that bubbles can

help explain the “excess volatility puzzle” - the large volatility of asset prices, with little

movements in dividends or consumption. Moreover, a bubble in an asset increases the

conditional expected risk premium, respectively conditional Sharpe ratio of the asset if

the rate of growth of the bubble covaries, respectively is correlated more negatively to the

stochastic discount factor than the fundamental asset return. In fact appropriately chosen

bubbles can make the conditional Sharpe ratio (or equity premium, or kurtosis) of an asset

return be arbitrarily close to the maximal one attainable by a portfolio with positive gross

returns. Bubble injections can also generate time-varying (and countercyclical) conditional

risk premia and Sharpe ratios, in line with the documented “conditional equity premium

puzzle” (Cochrane 2000, Chapter 21).

Rational bubbles do not have to be nonstationary, as commonly believed, and therefore

at odds with empirical observations. With low interest rates, bubbles can grow at the rate

of aggregate endowment and be stationary. This can be seen in the example in Section

2, or in some of the examples in Hellwig and Lorenzoni (2009) and Bidian and Bejan

(2012). Bidian (2011, Chapter 5) analyzes in detail the rather loose connection between

the existence of bubbles and the stationarity properties of the dividend yield. It should be

also emphasized that there is no contradiction between the possibility of bubble injections

discussed here and the nonexistence of bubbles on positive supply assets in economies with

“high interest rates”, that is with finite present value of aggregate consumption (Santos

and Woodford 1997, Huang and Werner 2000, Kocherlakota 1992).1 The nonexistence of

bubbles results rely on the hidden assumption that the debt limits faced by agents are

nonpositive, while the adjusted debt bounds after a bubble injection must become positive

1Bubbles grow on average at the rate of interest rates. With high interest rates, the bubble must
become very large relative to aggregate endowment, even if this happens with small probability. But this
is incompatible with the presence of optimizing, forward looking agents, who do not allow their financial
wealth to exceed the present value of their future consumption.
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eventually, if the asset is in positive supply and the interest rates are high, even though this

may happen with arbitrarily small probability. However, low interest rates are the natural

result of the existence of enforcement limitations, since in equilibrium the interest rates

adjust to a lower level to entice agents to repay their debt and prevent default. Bidian and

Bejan (2012) show that bubble injections leading to nonpositive debt limits are possible for

the most common types of penalties for default encountered in the literature: a permanent,

respectively temporary interdiction to trade, or an interdiction to borrow.

To our knowledge, our paper is the first that shows that rational bubbles can generate

increases in trading volume. There is a well developed literature on speculative bubbles

in economies with short sale constraints and heterogeneous beliefs (Harrison and Kreps

1978, Morris 1996, Scheinkman and Xiong 2003), which arose in response to the difficulty

of generating rational bubbles (the nonexistence results mentioned before), and because

(Scheinkman and Xiong 2003)

“rational bubble models are incapable of connecting bubbles with turnover.”

The cited papers use partial equilibrium models, in which infinitely wealthy risk neutral

agents pass the asset from one to another, the pessimists selling it to the optimists. Beliefs

are constructed such that agents take turns in being the optimists, which results in frequent

trading. In the speculative bubbles literature, the price of the asset is in fact equal with the

present value of its dividends discounted at market rates, so the presence of overvaluation

is debatable.2 Additionally, if learning is allowed, agents’ beliefs converge and the bubble

disappears generically (Morris 1996, Slawski 2008). As explained in Scheinkman and Xiong

(2003), it is also hard to generate realistic time series dynamics for speculative bubbles.3

Furthermore, these very stylized models are unable to connect bubbles to macro aggregates

such as consumption, output, interest rates.

2In defining a speculative bubble, the fundamental value of an asset is taken to be the maximum amount
that an agent would be willing to pay when forced to maintain the holdings of the asset forever. Thus the
dividends of the asset are discounted using the same agent’s intertemporal marginal rates of substitution
(IMRS), rather than using the marginal’s agent (the buyer of the asset) IMRS. Thus a speculative bubble
is actually the “convenience yield” accruing to an agent holding an asset subject to short sale constraints.
Indeed, with shorting restrictions, an agent that keeps inventories of an asset has the option to sell it if its
price is high and can better smooth demand shocks, and therefore enjoys a convenience yield (Cochrane
2002). Duffie, Garleanu, and Pedersen (2002) rationalize the convenience yield induced by short sale
constraints as the value of lending fees arising from searching for security lenders and bargaining over the
terms of lending.

3Run-ups in asset prices would require a continual increase in the dispersion of beliefs, and bubble
collapses would require a sudden alignment of beliefs.
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In our paper, bubbles enable agents to circumvent a reduction in the availability of

credit, and to achieve identical allocations to those possible under more relaxed, but still

self-enforcing debt limits. A host of recent papers point out, similarly, that bubbles can

arise in the presence of financial frictions, and help relax the underlying borrowing con-

straints (Kocherlakota 2009, Martin and Ventura 2012, Giglio and Severo 2012, Farhi and

Tirole 2012). Those bubbles facilitate the transfer of resources from unproductive en-

trepreneurs to the productive ones, by increasing the borrowing capacity of the latter.

Miao and Wang (2011)4 make a related point, but they emphasize the multiplicity of equi-

libria in economies with limited enforcement, studied also in Hellwig and Lorenzoni (2009)

and Bidian and Bejan (2012). None of these papers can address the trading volume effects

of bubbles.

Debt is fully collateralized (secured) by a (pleadgeable) fraction of the capital in Farhi

and Tirole (2012), by the physical (but not the intangible) capital in Giglio and Severo

(2012)), or by bubbles in Kocherlakota (2009) and Martin and Ventura (2012). These

papers also focus on the production sector, shutting down (non-entrepreneurs) consumers

from borrowing and lending.5 By contrast, our model allows for unsecured debt, sustained

solely by reputation (for example, credit card debt). We focus squarely on the consumer

sector, allowing consumers to borrow and lend to each other, in a Bewley-Aiyagari envi-

ronment with infinitely lived agents. As argued in Guerrieri and Lorenzoni (2011) and the

references therein, the response of the consumer (household) sector to the credit tightening

is crucial in explaining the recent U.S. recession. Our paper indicates that the collapse of

the large housing bubble was tantamount to a (proportionally) large credit crunch, whose

contractionary effects can lead to the experienced recession.

The paper is organized as follows. Section 2 contains an illustrative example. Section

3 presents the model and the bubble equivalence theorem. Section 4 analyzes the implica-

tions of bubble injections on volume of trade and asset returns, and Section 4 concludes.

Appendix A gives necessary and sufficient conditions on a process which, if added to asset

prices, will not distort the pricing kernels (and the one-period asset spans). Appendix B

4In their model there are no rational bubbles, as the value of a firm is always equal with its the present
value of dividends, discounted at market rates. They use a different definition of bubbles, calculated as the
difference between the value of the firm and the value predicted using the q theory of investment.

5In Kocherlakota (2009), non-entrepreneurs (called workers) are simply assumed to consume the fruits
of their labor each period. The other three papers use overlapping generations models, in which the
consumers are the old agents, who again simply consume their wealth. Farhi and Tirole (2012) allow also
for the presence of an outside consumer sector endowed with one period Lucas trees, but again these agents
just consume the present value of their Lucas tree endowment.
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introduces some extensions to the example in Section 4.

2 A guiding example

We consider an extension of the example in Kocherlakota (2011), or alternatively, a de-

terministic version of the model in Guerrieri and Lorenzoni (2011), which we can solve

analytically. There is no uncertainty and only one good. There are two agents {1, 2}
with identical utilities E

∑
t≥0 β

t (ln ct − nt) over consumption (c) and labor (n), where

0 < β < 1. Agent 1 is productive in odd periods {1, 3, . . .}, while agent 2 is productive in

even periods {0, 2, 4, . . .}. Agent i can convert 1 unit of labor into Zit units of consumption,

where Zit = 1 if i is productive at t, and 0 otherwise. At any period, the productive agent

is referred to as the high-type (agent), and the unproductive agent is the low-type.

There is one long-lived asset paying dividends dt := ληt at period t ≥ 0, where 0 ≤ η < 1

and λ > 0, and one period bonds (needed only for the case when η = 0). Agent i is endowed

with θi−1 units of the asset. Additionally, at each period t, agent i has an endowment of

goods eit, where eit := yH if i is high-type at t and equal to yL otherwise. We assume

yH ≤ 1, yL < β and η ≤ yL/β.

For a period t, let θit−1 be agent’s i beginning of period asset holdings, pt the (ex-

dividend) price of the long-lived asset, and qt be the price of the bond. Thus the budget

constraints of agent i are

cit + ptθ
i
t + qtbt = eit + Zitn

i
t + (pt + dt)θ

i
t−1 + bt−1, ∀t ≥ 0.

Agent i is subject to debt constraints restricting their beginning of period wealth,

(pt + dt) · θit−1 + bt−1 ≥ −B, ∀t ≥ 0,

and B is assumed to satisfy

0 < B ≤ 1− yL

1 + β
. (2.1)

Let Rt+1 := 1/qt be the gross interest rate (return) from date t to t + 1. The absence of

arbitrage between bonds and the long-lived asset ensures that pt = (pt+1 + dt+1)/Rt+1.

We analyze two cases, differing in the dividend process and asset structure. The first

case is η = 0 and θ1
−1 = θ2

−1 = 1
2 , thus the asset is fiat money in unit supply. This

case was studied in Kocherlakota (2011), where fiat money is referred to as “land”. The
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difference is that we use constraints on debt limiting the beginning (rather than the end)

of period wealth, in order to be in line with the literature on endogenous debt limits in

economies with limited enforcement (Alvarez and Jermann 2000), and that we also study

the transition dynamics to the steady state, to be able to analyze completely the welfare

effects of a credit crunch and bubble injection. Agents can also trade in a complete set

of one-period Arrow securities, which in this deterministic economy amount to one period

bonds.6 Next we focus on the case η > 0 and θ1
−1 = θ2

−1 = 0, thus the asset is in zero supply.

This asset dynamically completes the markets as it has a positive price, hence bonds are

unnecessary. Therefore if η > 0 (hence dt > 0 and pt > 0), we assume that bonds are not

available for trade (bt = 0 for all t). In both cases, agent i’s combined endowment at t

(non-dividend income eit plus dividends from initial holdings θi−1dt) is the same, eit. This

preserves the structure of equilibrium (transfers between agents and interest rates).

Iterating in pt = (pt+1 + dt+1)/Rt+1 gives

p0 =
∑
t>0

t∏
s=1

R−1
s dt + lim

t→∞

t∏
s=1

R−1
s pt.

The term limt→∞
∏t
s=1R

−1
s pt represents the asset price in excess of the present value of

its future dividends, and is referred to as a bubble whenever it is non-zero. Notice that

for the fiat money case (the zero dividend case), any positive price for money represents a

bubble.

We analyze first equilibria without bubbles, where the price of the asset equals the

discounted present value of its future dividends. The two cases (zero and non-zero dividend)

lead to an identical equilibrium, except for portfolios. The transition to the steady state

is complete after the initial period. Agents’ consumption in the transition period (zero)

is cH0 for the high-type, and cL0 for the low-type, labor supply of the high-type is n0, and

the interest rate is R1. In steady state, the high-type (low-type) agent has consumption cit

equal to cH (cL), wealth level (pt + dt)θ
i
t−1 + bit−1 equal to −B (B), his labor supply nit is

n (0) and the interest rates are constant, R.

6Without bonds, autarchy would be the only feasible allocation without a bubble (with unvalued money).
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At the proposed path, agents’ first order conditions are

1

cH
= 1;

cL

cH
= βR;

cH

cL
≥ βR, (2.2)

1

cH0
= 1;

cL

cH0
= βR1;

cH

cL0
≥ βR1. (2.3)

Budget constraints are

cH +R−1B = yH −B + n, cL −R−1B = yL +B,

cH0 +R−1B = yH + n0, cL0 −R−1B = yL.

Thus R is determined as the unique solution in
(
yL

β ,
1
β

]
of βR = yL +B(1 +R−1) (= cL),

or equivalently of

B =
βR− yL

1 +R−1
. (2.4)

Indeed, the right hand side of (2.4) is strictly increasing in R, and equal to 0 for R = yL/β

and to 1−yL
1+β for R = 1

β . Consumption, labor supply and interest rates during transition

are obtained as function of R from the budget constraints and the first order conditions,

cH = cH0 = 1, R1 = R, cL = βR, cL0 = yL +R−1B, (2.5)

n = 1 +B +R−1B − yH , n0 = 1 +R−1B − yH . (2.6)

Asset prices and portfolios θHt , b
H
t (of the high-type) and θLt , b

L
t ( of the low-type) are

pt =
∑
s>t

R−(s−t)ds =
ληt+1

R− η
,∀t ≥ 0, (2.7)

θHt = B/(pt+1 + dt+1), θLt = −B/(pt+1 + dt+1); bHt = bLt = 0 if η > 0, (2.8)

θHt = θLt =
1

2
; bHt = B, bLt = −B if η = 0. (2.9)

To confirm that (2.4)-(2.8) describe indeed an equilibrium, it remains to verify that the first

order conditions of low-types hold, that consumption and labor supply are positive, and

that transversality and market clearing conditions hold. The inequalities in (2.2)-(2.3) hold

if cH ≥ cL, or equivalently, if R ≤ 1/β, which is true, by (2.1) (and (2.4)). Consumption

and labor supply are positive by (2.5) and (2.6), since yH ≤ 1 by assumption. The
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transversality conditions7 and the market clearing conditions are satisfied:

lim
t→∞

βt

cit
((pt + dt)θ

i
t−1 + bit−1 +B) = 0,

θ1
t + θ2

t = 0, cH + cL = yH + yL + n, cH0 + cL0 = yH + yL + n0.

We fully described the equilibrium associated to some debt limits B ∈
(

0, 1−yL
1+β

]
. Notice

that consumption in steady state is increasing in R, and hence in B (by (2.4)) as cL = βR

and cH = 1. Similarly, consumption during transition, labor supply (both during transition

and in steady state) and interest rates are all increasing functions of B (and of R, by (2.4)).

Indeed, they are increasing functions of R−1B, and therefore of B , since

R−1B = β − β + yL

1 +R
. (2.10)

Intuitively, a credit crunch (a decrease in B) lowers the interest rates, as all agents want to

save more. Constrained borrowers have to reduce their indebtedness, while unconstrained

ones increase their savings for precautionary reasons. The borrowing constrained unpro-

ductive agents adjust by consuming less as they cannot work more, while the productive

agents reduce their labor supply due to the low return on saving. As shown computation-

ally (for plausible parametrizations) in Guerrieri and Lorenzoni (2011), even when indebted

agents can adjust by both spending less and working more, the consumption side dominates

and output falls.

The welfare of the agents is also lower after a credit crunch, since the utilities of the

first agent (initially low-type) and second agent (initially high-type) are

UL := ln cL0 +
β

1− β2

(
ln cH − n+ β ln cL

)
= ln(yL +R−1B) +

β2

1− β2
(lnR−R) +

β

1− β2
(β lnβ + yL + yH − 1),

UH := ln cH0 +
β

1− β2

(
ln cL − βn

)
=

β

1− β2

(
lnR− β2R+ lnβ + βyL

)
,

7See Bidian and Bejan (2012) for their derivation.
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and therefore are increasing functions of R (and B).8

Finally, trading volume decreases in the aftermath of a credit crunch. Indeed, in the

case η = 0 (fiat money), by (3.9), the trading volume at t is |qtbit| = R−1B, and therefore

decreases when B decreases. For the case η > 0 (non-zero dividend asset), using (2.7) and

(2.8), the trading volume at t is

|pt(θit − θit−1)| =

{
R−1B if t = 0

R−1B(1 + η) if t > 0
. (2.11)

Thus trading volume decreases when B (and R) decreases, by (2.10).

To illustrate some of the results of this paper, we focus on the equilibrium with zero

net interest rates R = R̄ := 1, that is we assume that B = B̄, where9

B̄ :=
β − yL

2
.

Barred variables will refer to this equilibrium.

We show that one can introduce a bubble of size ε > 0 in asset prices without perturbing

the equilibrium allocations, as long as agent’s i debt limits are tightened to B − θi−1ε, for

each i. The idea is that asset prices higher by ε boost the initial wealth of agent’s i by

θi−1ε. The tighter future debt limits (reduced by θi−1ε) force the agent to save the additional

wealth, sterilizing entirely the windfall created by the bubble.

Consider first the fiat money case, η = 0. Assume that a credit crunch occurs, and

that the debt limits are tightened to B̂ := B̄ − ε/2, where 0 < ε < 2B̄. From (2.10),

as discussed before, the credit crunch will contract consumption and labor supply. There

exists however another “hatted” equilibrium under the tighter debt limits B̂, equivalent

from the point of view of consumption, labor supply and interest rates to the equilibrium

before the credit crunch (the equilibrium associated to debt limits B̄ and with unvalued

8Clearly ∂UH

∂R
> 0 as R ≤ 1/β. Similarly,

∂UL

∂R
=

β + yL

yL +R−1B

1

(1 +R)2
+

β2

1− β2

(
1

R
− 1

)
,

which is a decreasing function of R. Moreover, ∂UL

∂R

∣∣∣
R=1/β

= 0, therefore ∂UL

∂R
> 0 for R < 1/β.

9As known from Hellwig and Lorenzoni (2009) and Bidian and Bejan (2012), these are the endogenous
debt limits that prevent default and allow for maximal credit expansion, when the penalty for default is an
interdiction to borrow.
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money),

ĉH = c̄H , ĉL = c̄L, ĉH0 = c̄H0 , ĉ
L
0 = c̄L0 , n̂ = n̄, n̂0 = n̄0, R̂ = R̄ = 1,

but with money valued at ε (thus with the long-lived asset’ prices increased by ε),

p̂t = p̄t + ε = ε, (2.12)

and with identical portfolio holdings. Indeed, it is immediate to check that agents’ budget

constraints are satisfied by the new prices and portfolios. The optimality and market

clearing conditions remain the same. The equivalence of the two equilibria (the barred and

the hatted one) is a particular instance of the “bubble equivalence theorem” to be analyzed

in detail in the paper, for general stochastic economies, with possibly incomplete markets

and debt limits endogenized as in Alvarez and Jermann (2000). It shows that a bubble

can counteract entirely the effect of a credit crunch (the subsequent contraction), via the

wealth injection to the asset holders. In this sense, bubbles are expansionary.

In the absence of a bubble, the equilibrium under the tighter debt limits B̂ would lead

to lower trading volume. Therefore it is not surprising that a bubble, by increasing the risk

sharing to levels possible before the credit crunch, will also increase the trading volume.

However, we ask the non-obvious and more interesting question throughout the paper:

can a bubble lead to higher trading volume when compared to the equivalent (in terms

of allocations) bubble-free equilibrium with more relaxed debt limits (before the credit

crunch)? This would imply that bubbles can create additional trade beyond that needed

to support the additional amount of risk-sharing enabled by them.

In the fiat money case studied above, it turns out that bubbles do not affect portfolios

(when comparing the equivalent equilibria). The bubble-free (barred) equilibrium and

the bubbly (hatted) equilibrium with tighter debt limits have identical allocations and

portfolios of bonds and money. Therefore one could conclude that the bubble does not

affect trading volumes. Of course, with redundant assets, quantifying trading volume

effects of bubbles is an ill-posed problem. Due to the redundancy of either valued money

or bonds, one can achieve arbitrarily desired trading volumes in the bubble-carrying asset

(money), by appropriately adjusting the portfolios in the remaining assets (bonds).

Therefore throughout the paper we analyze the trading volume effects of bubbles only in

environments without redundant assets, where the problem is well-posed and we can obtain

an unambiguous answer. In the example of this section, we show that in case when η > 0
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(hence the stock is the only asset), the bubble increases the trading volume even relative

to the equivalent equilibrium with relaxed debt limits. We already know that without a

bubble the credit crunch would result in lower trading volumes. We show below that, in

fact, the bubble more than restores the trading volume to levels before the credit-crunch,

and leads to net increases in trading volume. As in the fiat money case, it can be verified

that the barred (bubble-free) equilibrium is equivalent with a hatted (bubbly) equilibrium,

where the asset prices are higher by ε > 0 (p̂t = pt+ε), the allocations are unchanged, and

agents’ portfolios are

θ̂it =
θ̄it

1 + Λt
, where Λt =

ε

p̄t
. (2.13)

Using θ̄it−1 = −ηθ̄it and Λt−1 = ηΛt, in the bubbly equilibrium the trading volume is

|p̂t(θ̂it − θ̂it−1)| = p̄t(1 + Λt)

∣∣∣∣ θ̄it
1 + Λt

−
θ̄it−1

1 + Λt−1

∣∣∣∣ = |p̄tθ̄t| ·
(

1 +
η(1 + Λt)

1 + ηΛt

)
= |p̄t(θ̄t − θ̄t−1)| · 1

1 + η

(
1 +

η(1 + Λt)

1 + ηΛt

)
, ∀t > 0.

Thus the bubble injection strictly increases the trading volume for all periods t > 0, when

compared to the bubble-free (barred) equilibrium, and the increase factor is:

1 <
1

1 + η

(
1 +

η(1 + Λt)

1 + ηΛt

)
=

1

1 + η

(
2− 1− η

1 + ηΛt

)
↗ 2

1 + η
( as t→∞).

The larger the ε is (that is, the initial value of the bubble), the closer is the initial relative

increase in the trading volume to its asymptotic value 2/(1 + η) (of relative increase).

Notice that for small η, that is if we approach the case of the non-dividend paying asset

(fiat money), the volume of trade doubles.

3 Bubble injections

We consider a stochastic, discrete-time, infinite horizon economy. The time periods are

indexed by the set N := {0, 1, . . .}. The uncertainty is described by a probability space

(Ω,F , P ) and by the filtration (Ft)∞t=0, which is an increasing sequence of finite partitions

Ft10 on the set of states of the world Ω generating F ,11 with F0 = {∅,Ω}.
10We interpret Ft as the information available at period t.
11That is, such that F = σ(∪tFt), where σ(∪tFt) represents the smallest σ-algebra containing ∪tFt.
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We let X be the set of all stochastic processes adapted to (Ft)∞t=0,12 and denote by X+

(respectively X++) the processes x ∈ X such that xt ≥ 0 P -almost surely (respectively

xt > 0 P -almost surely) for all t ∈ N. All statements, equalities, and inequalities involving

random variables are assumed to hold only “P -almost surely”, and we will omit adding

this qualifier. When K,L ∈ N \ {0}, let XK×L, respectively XK×L
+ be the set of vector (or

matrix) processes (zij)1≤i≤K,1≤j≤L with zij ∈ X, respectively zij ∈ X+.

There is a single consumption good and a finite number, I, of consumers. An agent

i ∈ {1, 2, . . . , I} has endowments ei ∈ X+, and his preferences are represented by a utility

U : X+ → R given by U i(c) = E
∑∞

t=0 u
i
t(ct), where uit : R+ → R is continuous, increasing

and concave and E(·) is the expectation operator with respect to probability P . The

conditional expectation given the information available at t, Ft, is denoted by Et(·). Since

there is no information at period 0, E0(·) = E(·). The continuation utility of agent i at t

provided by a consumption stream c ∈ X+ is U it (c) := Et
∑

s≥t u
i
s(cs).

There is a finite number J of infinitely lived, disposable securities, traded at every date.

The dividend and price vector processes are d = (d1, . . . , dJ) ∈ X1×J
+ and p = (p1, . . . , pJ) ∈

X1×J
+ .

Consumer i has an initial endowment θi−1 ∈ RJ+ of securities and his trading strategy is

represented by a process θi ∈ XJ×1. Fix some wealth bounds wi ∈ X for agent i and define

the budget constraint and indirect utility of an agent i from period s ≥ 0 onward, when

faced with prices p ∈ X1×J
+ , debt bounds wi ∈ X and having an initial wealth νs : Ω→ R

which is Fs-measurable, as

Bi
s(νs, w

i, p) = {(ci, θi) ∈ X+ ×XJ×1 | cis + psθ
i
s = eis + νs, (3.1)

cit + ptθ
i
t = eit + (pt + dt)θ

i
t−1, (pt + dt)θ

i
t−1 ≥ wit, ∀t > s},

V i
s (νs, w

i, p) = max
(ci,θi)∈Bis(νs,wi,p)

U is(c
i). (3.2)

Definition 3.1. A vector
(
p, (ci)Ii=1, (θ

i)Ii=1

)
consisting of a security price process p ∈

X1×J
+ , and for each agent i ∈ {1, . . . , I}, a consumption process ci ∈ X+ and a trading

strategy (portfolios) θi ∈ XJ×1 is an equilibrium with exogenous debt limits (wi)Ii=1 if the

following conditions are met:

i. Consumption and portfolios of each agent i are feasible and optimal: (ci, θi) ∈
Bi

0((p0 + d0)θi−1, w
i, p) and U i(ci) = V i

0

(
(p0 + d0)θi−1, w

i, p
)
.

12This is the set of sequences x = (xt)t∈N of random variables xt : Ω→ R such that xt is Ft-measurable.
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ii. Markets clear:
∑I

i=1 c
i
t =

∑I
i=1 e

i
t + dt ·

∑I
i=1 θ

i
−1,

∑I
i=1 θ

i
t =

∑I
i=1 θ

i
−1, ∀t ∈ N.

Consider an equilibrium
(
p, (ci)Ii=1, (θ

i)Ii=1

)
with (exogenous) debt bounds (wi)Ii=1.

Since the utilities of the agents are strictly increasing in consumption at each date and

state, prices p exclude arbitrage opportunities. Thus there cannot exist θ ∈ XJ×1 and

t ∈ N such that ptθt ≤ 0 and (pt+1 + dt+1)θt ≥ 0, with at least one inequality being strict

on a set of positive probability. Otherwise consumer i would alter his portfolio θit at t by

adding to it the strategy θt, guaranteeing an increase in his consumption at t and t+1, and

a strict increase in one of the periods, with positive probability. This modified strategy

still satisfies the debt constraints. The absence of arbitrage opportunities is equivalent to

the existence of a process a ∈ X++ such that (Santos and Woodford 1997)

pt = Et

[
at+1

at
(pt+1 + dt+1)

]
, ∀t ≥ 0. (3.3)

We denote by A(p) the set of all processes a ∈ X satisfying equation (3.3), and we call

them deflators. Strictly positive deflators belonging to A++(p) := A(p)∩X++ will be called

state price densities, or (interchangeably) pricing kernels. These pricing kernels following

from the absence of arbitrage opportunities can be used to define the “fundamental value”

of an asset. Equation (3.3) implies that pt = 1
at
Et
∑

s>t asds + limT→∞
1
at
EtaT pT , and

bt(a, p) :=
1

at
lim
T→∞

EtaT pT (3.4)

is well defined and nonnegative, and for all t ∈ N,

atbt(a, p) = Etat+1bt+1(a, p). (3.5)

Therefore a · b(a, p) is a nonnegative martingale, and b(a, p) = 0 if and only if b0(a, p) =
1
a0

limt→∞Eatpt = 0. We interpret the discounted present value of dividends d under the

state price density a, that is ft(a) := 1
at
Et
∑

s>t asds, as the fundamental value of d. Hence

b(a, p) represents the part of asset prices in excess of fundamental values. Following Santos

and Woodford (1997), we say that the equilibrium price process p ambiguously involves a

bubble if b0(a, p) > 0 for some a ∈ A++(p), while b0(a′, p) = 0 for some other a′ ∈ A++(p).

If b0(a, p) > 0 for all a ∈ A++(p), the equilibrium prices unambiguously involves a bubble

component.

Kocherlakota (2008) assumed that in addition to trading in long-lived securities, agents
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can also trade in each period a full set of state-contingent claims to consumption next

period. Given an equilibrium without bubbles in which the asset prices are p and the state

price density13 is a, and given an arbitrary process ε ∈ X1×J
+ such that a ·ε is a martingale,

he showed that an “equivalent” equilibrium with prices p+ ε, unchanged pricing kernel a

and identical consumption paths for the agents can be constructed. He dubbed this result

the “bubble equivalence theorem”, since the process ε “injected” in the asset prices is the

bubble component for the price process p+ ε, that is ε = b(a, p+ ε).

We show that Kocherlakota’s (2008) bubble equivalence theorem holds in our incom-

plete markets framework, if the candidate processes to be injected in asset prices are

nonnegative processes that preserve the set of deflators. Formally, a process ε ∈ X1×J is

deflator-preserving (given prices p) if A(p) = A(p + ε), and we denote the set of all such

processes by

MJ(p) :=
{
ε ∈ X1×J |A(p) = A(p+ ε)

}
. (3.6)

Let MJ
+(p) := MJ(p)∩X1×J

+ . We give several equivalent characterization of the set MJ(p)

in Appendix A. It is also the set of processes ε that are a martingale when discounted by

any deflator in A(p) and A(p + ε). Equivalently, MJ(p) is also the set of all discounted

martingales (under some a ∈ A(p)) that preserve the asset span if added to asset prices.

Finally, MJ(p) is the set of processes ε with rates of growth replicable by returns on

portfolios under the initial prices p and the adjusted prices p + ε (if the process is added

to asset prices). Thus there are some portfolios Λ = (Λ1, . . . ,ΛJ) ∈ XJ×J and Γ =

(Γ1, . . . ,ΓJ) ∈ XJ×J such that

εjt+1

εjt
=

(pt+1 + dt+1)Λjt

ptΛ
j
t

=
(p̂t+1 + dt+1)Γjt

p̂tΓ
j
t

, ∀t ≥ 0,∀j ∈ {1, . . . , J},

where p̂ = p+ ε.

As shown in Appendix A, the set MJ(p) is large, as it contains the set M̄J(p) (and is

equal to it if there are no redundant assets) defined by

M̄J(p) :=
{
ε ∈ X1×J | ∃Λ = (Λ1, . . . ,ΛJ) ∈ XJ×J s.t. ∀t ≥ 0, j ∈ {1, . . . , J},

det(I + Λt) 6= 0 and εj0 = p0Λj0,
εjt+1

εjt
=

(pt+1 + dt+1)Λjt

ptΛ
j
t

}
, (3.7)

13The pricing kernel is unique when markets are complete .
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where I denotes the J-dimensional identity matrix, and det(·) is the determinant of a

matrix. Therefore any trading strategy Λ = (Λ1, . . . ,ΛJ) ∈ XJ×J with det(I + Λt) 6= 0

can be used to construct an ε ∈ M̄J(p) ⊂ MJ(p). Moreover, such a Λ with nonnegative

gross returns (for example, if Λ ∈ XJ×J
+ ) generates a nonnegative ε (ε ∈ MJ

+(p)). The

condition det(I + Λt) 6= 0 guarantees that there is no drop of rank in the asset span after

ε is injected in asset prices. Non-singularity of I + Λt is a mild condition (generically

satisfied), equivalent with requiring that −1 is not an eigenvalue of Λt. In particular, when

a bubble is injected only in one of the assets, say the first, then Λt = (Λ1
t , 0, . . . , 0), and

det(I + Λt) 6= 0 whenever Λ11
t 6= −1, as (I + Λt)

−1 = I−Λt/(1 + Λ11
t ). For ε ∈ M̄J(p), the

set of trading strategies with returns replicating the growth in ε is denoted by

Λ(ε, p) :=
{

Λ ∈ XJ×J | ∀t ≥ 0, εt = ptΛt, εt+1 = (pt+1 + dt+1)Λt, det(I + Λt) 6= 0
}
.

If there are no redundant assets, the set Λ(ε, p) is a singleton, and M̄J(p) = MJ(p)

(Proposition A.2).

A bubble-free equilibrium with prices p and a bubbly equilibrium with prices p + ε

cannot be equivalent unless ε ∈ MJ
+(p), otherwise the set of pricing kernels would differ,

A(p) 6= A(p + ε). We will show also the converse, that any ε ∈ MJ
+(p) can be injected as

a bubble in prices, resulting in an equivalent equilibrium from the point of view of pricing

kernels and agents’ consumption. We prove first that agents’ feasible consumption paths

remain unchanged when prices are inflated by a process in MJ(p), if the debt limits are

tightened appropriately.

Proposition 3.1. Consider an agent i starting period t with wealth equal to νt, assumed

Ft-measurable. Let θ̄−1 : Ω→ RJ be Ft-measurable and ε ∈MJ(p). Then

(ci, θi) ∈ Bi
t

(
νt, w

i, p
)
⇐⇒ (ci, θ̂i) ∈ Bi

t

(
ν̂t, ŵ

i, p̂
)
,

where ν̂t = νt+εtθ̄−1, ŵit = wi+εθ̄−1, p̂ = p+ε, and θi, θ̂i satisfy (ps+ds)(θ
i
s−1−θ̄−1) = (p̂s+

ds)(θ̂
i
s−1 − θ̄−1), for all s > t. Moreover, if ε ∈ M̄J(p), then θ̂is = (I + Λs)

−1
(
θis + Λsθ̄−1

)
,

where Λ ∈ Λ(ε, p).

Proof. Let (ci, θi) ∈ Bi
t

(
νt, w

i, p
)
. Since ε ∈ MJ(p), there exists θ̂i such that (ps +

ds)(θ
i
s−1 − θ̄−1) = (p̂s + ds)(θ̂

i
s−1 − θ̄−1), for all s > t. As a · ε is a martingale for each
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a ∈ A(p) = A(p+ ε),

p̂s(θ̂
i
s − θ̄−1) = Es

as+1

as
(ps+1 + ds+1)(θis − θ̄−1) = ps(θ

i
s − θ̄−1), ∀s ≥ t.

It follows that for s ≥ t+ 1,

(p̂s + ds)θ̂
i
s−1 − p̂sθ̂is = (ps + ds)θ

i
s−1 − psθis.

Moreover,

ν̂t − p̂tθ̂it = νt + εtθ̄−1 − (pt + εt)θ̂
i
t = νt − ptθit.

The debt limits are satisfied, as

(p̂t + dt)θ̂
i
t−1 = (pt + dt)θ

i
t−1 + εtθ̄−1 ≥ wit + εtθ̄−1 = ŵit,

and we conclude that Bi
t

(
νt, w

i, p
)
⊂ Bi

t

(
ν̂t, ŵ

i, p̂
)
. If ε ∈ M̄J(p), then for Λ ∈ Λ(ε, p)

(ps + ds)(θ
i
s−1 − θ̄−1) = (ps + ds)(I + Λt−1)(I + Λt−1)−1(θ̂is−1 − θ̄−1)

= (p̂s + ds)(I + Λt−1)−1(θis−1 − θ̄−1),

and therefore we could choose θ̂is−1 − θ̄−1 := (I + Λt−1)−1(θis−1 − θ̄−1), or equivalently,

θ̂is = (I + Λs)
−1
(
θis + Λsθ̄−1

)
.

Conversely, using −ε ∈MJ(p) and the previously shown implication,

Bi
t(ν̂t, ŵ

i, p̂) ⊂ Bi
t(ν̂t − εtθ̄−1, ŵ

i − εθ̄−1, p̂− ε) = Bi
t(νt, w

i, p).

The intuition for the proposition is especially transparent in the particular case when

θ̄−1 is the portfolio with which the agent starts period t and νt is the value of this portfolio ,

νt := (pt+dt)θ̄−1.14 With bubble-inflated prices, the owners of the assets receive a windfall

in the form of higher initial wealth. Tightening their future debt bounds by the bubble

weighted by initial asset holdings will force them to save the initial windfall in order to meet

the more stringent borrowing requirements, leading thus to equivalent budget constraints.

14The slightly more general statement of Proposition 3.1 is needed in Theorem 3.3 and the discussion
that follows after that theorem.
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Consider a bubble-free equilibrium with asset prices p. For any process ε ∈ MJ
+(p),

we show that there is an equivalent equilibrium with prices p + ε, identical consumption

and state price densities, and in which the debt constraints bind in exactly the same

date and states (even though they differ). Moreover ε is the bubble component in the

prices p + ε for any state price density a ∈ A(p + ε)(= A(p)), that is ε = b(a, p + ε),

hence the new equilibrium unambiguously involves a bubble. The converse is also true.

Consider an equilibrium that has a bubble under some deflator. If the set of deflators

at fundamental and bubbly prices coincide (which guarantees, by Lemma A.1 that the

bubble is unambiguous), then one can construct an equivalent bubble-free equilibrium

(from the point of view of consumption and pricing kernels), but with relaxed debt limits,

proportional to the size of the bubble.

Theorem 3.2. Let E :=
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
be an equilibrium (with exogenous

debt limits) and without bubbles. Choose ε ∈ MJ
+(p) and Λ ∈ Λ(ε, p). Then Ê :=(

p̂, (ŵi)Ii=1, (c
i, θ̂i)Ii=1

)
is an equilibrium with (unambiguous) bubble ε, where

p̂ = p+ ε, ŵi = wi + εθi−1, (p̂t + dt)(θ̂
i
t−1 − θi−1) = (pt + dt)(θ

i
t−1 − θi−1), ∀t ≥ 1. (3.8)

Moreover, if ε ∈ M̄J(p), then θ̂it = (I + Λt)
−1
(
θit + Λtθ̄−1

)
, where Λ ∈ Λ(ε, p). Conversely,

assume that E has a bubble component, that is, there exists a ∈ A++(p) such that ε :=

b(a, p) 6= 0. If −ε ∈MJ(p), then Ê given by (3.8) in which ε is replaced throughout by −ε
is a bubble-free equilibrium. Moreover, if −ε ∈ M̄J(p), then θ̂it = (I + Λt)

−1
(
θit + Λtθ̄−1

)
,

where Λ ∈ Λ(−ε, p).

Proof. For i ∈ {1, . . . , I − 1}, construct θ̂i satisfying (3.8), and set θ̂I := −
∑I−1

i=1 θ̂
i (which

therefore also satisfies (3.8)). By construction, the market clearing
∑

i θ̂
i =

∑
i θ
i
−1 holds.

For each i ∈ {1, . . . , I}, optimality of (ci, θ̂i) in the set Bi
0((p̂0 + d0)θi−1, ŵ, p̂) follows from

the optimality of (ci, θi) in Bi
0((p0 + d0)θi−1, w, p), and the equality of these two budgets

(Proposition 3.1).

If ε ∈ M̄J(p), optimality of (ci, θ̂i) in the set Bi
0((p̂0 + d0)θi−1, ŵ, p̂) follows again from

Proposition 3.1. Notice that
∑

i θ̂
i
t = (I+Λt)

−1(
∑

i θ
i
t+Λ

∑
i θ
i
−1) =

∑
i θ
i
−1, since

∑
i θ
i
t =∑

i θ
i
−1. Thus the market clearing conditions are satisfied.

The converse can be established in an identical manner.

The “bubble equivalence” result in Theorem 3.2 shows that any bubble that preserves

the set of deflators (or the asset span) is effectively equivalent with an appropriate relax-
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ation of debt limits, proportional with the size of the bubble.15 If markets are complete at

prices p (in the equilibrium E), then the set A(p) is a singleton, A(p) = {a}. A nonnegative

process ε such that a·ε is a martingale does not necessarily lead to an equivalent equilibrium

(with tighter debt limits) when added to prices p, since markets could become incomplete.

The exact condition that guarantees that markets remain complete at the inflated prices

is ε ∈ MJ(p). However, if a full set of one-period Arrow securities is traded at each date

and state, in addition to the long-lived securities, than there cannot be a drop-in-rank (a

decrease in the asset span) when ε is added to prices p. Therefore any nonnegative process

that is a martingale when discounted by the (unique) pricing kernel can be injected in

asset prices and lead to an equivalent equilibrium with tighter debt limits. This is the case

treated in Kocherlakota (2008).

We allow next for the endogenous determination of debt constraints driven by limited

commitment/imperfect enforcement as in Alvarez and Jermann (2000), and show that the

bubble inflated debt bounds in the equivalent bubbly equilibrium are also compatible with

the endogenous mechanism determining debt limits.

Assume that at any period t, when facing prices p (and dividends d), consumer i can

choose to default on his beginning of period debt16 and leave the economy, receiving a

continuation utility after default Ṽ i
t (p) (Ft-measurable). We allow this continuation utility

to depend on exogenous variables such as endowments and dividends, but we make explicit

only the functional dependence on prices, which are endogenous. Thus the default penalty

for each agent i is described by a mapping Ṽ i : X1×J
+ → X. Alvarez and Jermann (2000),

following Kehoe and Levine (1993), worked under the assumption that agents are banned

from trading following default, hence for each agent i,

Ṽ i
t (p) := U it (e

i). (3.9)

Alternatively, Hellwig and Lorenzoni (2009), building on the work of Bulow and Rogoff

(1989), assume that agents are subject to a milder punishment than (3.9). Agents can

15Proposition 3.1 and Theorem 3.2 are valid, without changes, if agents are subject to borrowing con-
straints of the form ptθ

i
t ≥ wit rather than (pt + dt)θ

i
t−1 ≥ wit as in (3.1). Indeed, for any A ∈ A(p) = A(p̂)

(and with the notation in (3.8)),

p̂t(θ̂
i
t − θi−1) = Et

at+1

at
(p̂t+1 + dt+1)(θ̂it − θi−1) = Et

at+1

at
(pt+1 + dt+1)(θit − θi−1) = pt(θ

i
t − θit−1),

hence p̂tθ̂
i
t = ptθ

i
t + εtθ

i
−1 ≥ wit + εtθ

i
−1.

16This is equal to (pt + dt)θ
i
t−1 if his trading strategy is θi ∈ XJ×1.
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continue to lend but not to borrow following default,

Ṽ i
t (p) := V i

t (0, 0, p), (3.10)

where the second argument in V i
t (0, 0, p) is the process in X identically equal to zero. As

in Alvarez and Jermann (2000), the option to default endogenizes the debt limits to the

maximum level so that repayment is always individually rational given future debt limits.

This leads to the notion of debt limits that are not-too-tight.

Definition 3.2. Debt limits wi faced by agent i are not-too-tight (NTT) given prices p and

penalties Ṽ i : X1×J
+ → X if V i

t (wit, w
i, p) = Ṽ i

t (p), ∀t.

The definition captures the idea that the bounds wi have to be “tight enough” to prevent

default, that is to be “self-enforcing” (V i
t (wit, w

i, p) ≥ Ṽ i
t (p)), but they should allow for

maximum credit expansion (thus one should not have V i
t (wit, w

i, p) > Ṽ i
t (p) on a positive

probability set). One can envision the NTT debt limits as being set by competitive financial

intermediaries, with agents unable to trade directly with each other. The intermediaries

set debt limits such that default is prevented, but credit is not restricted unnecessarily,

since competing intermediaries could relax them and increase their profits.

We extend our definition of equilibrium to allow for the endogenous determination of

debt constraints, in the presence of an outside option to default. An Alvarez-Jermann

equilibrium (AJ-equilibrium, for short)
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1, (Ṽ

i)Ii=1

)
consists of a

security price process p ∈ X1×J
+ , and for each agent i ∈ {1, . . . , I}, debt limits wi ∈ X, a

consumption process ci ∈ X+, a trading strategy θi ∈ XJ×1 and a mapping Ṽ i from prices

and dividends into continuation utilities after default such that
(
p, (ci)Ii=1, (θ

i)Ii=1

)
is an

equilibrium with (exogenous) debt limits (wi)Ii=1, and wi are not-too-tight given penalties

for default Ṽ i(p).17

Existence of AJ-equilibria in this general environment is a delicate problem, due to

the presence of incomplete markets, real (long-lived) securities and infinite horizon, which

creates existence problems even for equilibria with exogenous debt limits as in definition

17An equilibrium
(
p, (ci)Ii=1, (θ

i)Ii=1

)
with exogenous debt limits (wi)Ii=1 can be transformed into an AJ-

equilibrium in a rather trivial (and uninteresting) way by appropriately choosing the penalties for default.

Indeed,
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1, (Ṽ

i)Ii=1

)
with Ṽ it (p) := V it (wit, w

i, p) is trivially an AJ-equilibrium (as

long as the indirect utility V it (wit, w
i, p) is well defined). Alternatively, the initial equilibrium with exogenous

debt bounds (wi)Ii=1 is also an AJ-equilibrium with new debt bounds w̄it := (pt + dt)θ
i
t−1 and penalties

Ṽ it := U it (c
i).
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3.1. When markets are complete and the punishment for default is given by (3.9), the ex-

istence of the AJ-equilibrium is established by Kehoe and Levine (1993) and Alvarez and

Jermann (2000). With incomplete markets, Hernandez and Santos (1996) show that in our

environment, an equilibrium with exogenous debt limits exists for a dense subset of endow-

ment and dividend processes, if agents are impatient, have a nonnegative initial holding of

securities, and if their debt is restricted by the present value of future endowments,

wit = − inf
a∈A++(p)

Et
∑
s≥t

as
at
eis. (3.11)

The debt limits in (3.11) are chosen equal to the maximum amount that an agent can

borrow, if he must hold nonnegative wealth after some finite date. With complete mar-

kets, they are the NTT debt limits when the punishment for default is the confiscation of

endowment.

We show next that a bubble injection as in Theorem 3.2 preserves the NTT property

of the debt limits, leading to the bubble equivalence theorem for AJ-equilibria:

Theorem 3.3. Let
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1, (Ṽ

i)Ii=1

)
be an AJ-equilibrium. Choose

ε ∈ MJ
+(p) and Λ ∈ Λ(ε, p). If Ṽ i(p + ε) = Ṽ i(p) for all agents i ∈ {1, . . . , I}, then(

p̂, (ŵi)Ii=1, (c
i, θ̂i)Ii=1, (Ṽ

i)Ii=1

)
is an AJ-equilibrium, with p̂, θ̂i, ŵi given by (3.8).

Proof. By Proposition 3.1, ŵi := wi + εθi−1 are not-too-tight for prices p̂, since

Ṽ i
t (p̂) = Ṽ i

t (p) = V i
t (wit, w

i, p) = V i
t (wit + εtθ

i
−1, w

i + εθi−1, p+ ε) = V i
t (ŵit, ŵ

i, p̂).

The conclusion follows from Theorem 3.2.

The requirement Ṽ i(p + ε) = Ṽ i(p) that the “penalty” continuation utilities after

default are not affected by a bubble injection is necessary and sufficient to ensure that the

equivalence result in Theorem 3.2 extends to AJ-equilibria. Indeed, agents continuation

utilities when starting with maximal (binding) amounts of debt are identical in the bubbly

and bubble-free equilibrium, and therefore the penalties for default with and without a

bubble have to coincide, by the definition of NTT debt limits. This condition holds when

the continuation utilities after default are of the form (3.9), or more generally when Ṽ i does

not depend on prices. These are the only types of penalties considered in Kocherlakota

(2008). It holds also for the interdiction to borrow after default (3.10). In fact, it holds
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for a much more general class of penalties, where after default, an agent i is subjected to

some exogenous debt limits w̃i (equal to zero for an interdiction to borrow). Indeed, using

Proposition 3.1 with νt := w̃it, θ̄−1 := 0 ∈ RJ and wi := w̃i, it follows that V i
t (w̃it + εt ·

0, w̃i, p+ ε) = V i
t (w̃it, w̃

i, p), and therefore

Ṽ i
t (p+ ε) = V i

t (w̃it, w̃
i, p+ ε) = V i

t (w̃it, w̃
i, p) = Ṽ i

t (p). (3.12)

Santos and Woodford (1997) show that when agents’ debt limits are nonpositive, bub-

bles in assets in positive supply can exist only if the interest rates are low, leading to an

infinite present value of consumption. Therefore the modified debt limits (ŵi) of the bubbly

equilibrium of Theorem 3.3 can remain nonpositive (assuming that the initial constraints

(wi) were nonpositive) only if interest rates are low. Low interest rates arise naturally

under enforcement limitations, in order to induce agents to repay their debt and prevent

default. Bidian and Bejan (2012) give examples of bubble injections leading to nonpositive

debt limits when the penalties for default are the interdiction to trade (3.9), the interdiction

to borrow (3.10), or a temporary interdiction to trade.

As applications of Theorems 3.2-3.3, we investigate next the effects of bubble injections

on trading volume and asset returns.

4 Effects of bubbles on trading volume

Bubbles in an asset are typically associated with large increases in trading volume in that

asset (Cochrane 2002). As seen in the example of Section 2, bubbles restore the equilibrium

allocations to levels possible under relaxed debt limits (before the credit crunch). The

relaxation in debt limits and the additional risk sharing enabled by a bubble leads (not

surprisingly) to higher trading. The unexpected finding there was that a bubble increases

the trading volume even when compared to the equivalent bubble-free equilibrium with

relaxed debt limits (without a credit crunch). Thus bubbles create trading volume in excess

of the “fundamental” trading volume needed to sustain the same level of risk sharing in

the absence of the bubble.

We investigate the effect of bubble injections on the trading volume in more general

environments. We compare the two “equivalent” equilibria of Theorem 3.2, the bubble-free

equilibrium
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
and the bubbly equilibrium

(
p̂, (ŵi)Ii=1, (c

i, θ̂i)Ii=1

)
.

We assume that there are no redundant assets, which is needed to have a well-posed problem
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and a clearcut answer, as explained in Section 2. Without redundant assets, the set of

deflator-preserving processes MJ(p) equals M̄J(p), the set of processes ε with growth that

can be replicated by a non-singular trading strategy Λ ∈ Λ(ε, p). Moreover, Λ(ε, p) is a

singleton, and therefore agents’ adjustments in trading strategies in response to a bubble

are unambiguous.

In the bubble-free equilibrium, the number of shares of each asset bought, respectively

sold, by agent i at t is (θit − θit−1)+, respectively (θit − θit−1)− (the positive part and the

negative part of the change in portfolio are applied component-wise). Notice that the total

number of shares of each asset bought and sold at t are equal, since

∑
i

(θit − θit−1)+ =
∑
i

(θit − θit−1)− =
1

2

∑
i

|θit − θit−1|.

Thus we can measure the share volume of trade at t in each asset as

SVt = (SV 1
t , . . . , SV

J
t )′ :=

1

2

∑
i

|θit − θit−1|, (4.1)

and the dollar volume of trade for asset j as DV j
t := pjtSV

j
t . The share and dollar volume

of trade in the bubbly equilibrium are ŜV t := 1
2

∑
i |θ̂it − θ̂it−1|, D̂V

j
t := (pjt + εjt )ŜV

j
t ,∀j,

where θ̂it = (I + Λt)
−1(θit + Λtθ

i
−1), for all t ≥ 0 and Λ ∈ Λ(ε, p).

In dynamically complete markets economies with Markov endowments and borrowing

constraints that do not bind, Judd, Kubler, and Schmedders (2003) show that, with long-

lived assets (stocks), there is no trade in equilibrium (generically in dividends), after a

portfolio rebalancing that takes place in the first period, that is, θit = θit−1, for all i and

t ≥ 1. Notice that the trading volume of agent i after the bubble injection is

|θ̂it − θ̂it−1| = |
(
(I + Λt)

−1 − (I + Λt−1)−1
)

(θit − θi−1)|.

Therefore, in this class of economies, a bubble ε injected in prices unambiguously increases

the trading volume by distorting agents’ portfolios, as long as the trading strategy Λ =

Λ(ε, p) replicating the rate of growth of the bubble displays time variation.

In fact a bubble in only one asset can create trading in all of the assets, as agents adjust

their portfolios in response to the bubble-inflated price of that asset. To see this, assume, for

concreteness, that the bubble develops in the first asset. Thus ε := (ε1, 0, . . . , 0) ∈ X1×J
+ .
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In this case, Λ = (Λ1, 0, . . . , 0) ∈ Λ(ε, p) ⊂ XJ×J , and

θ̂it =

(
I− Λt

1 + Λ11
t

)
(θit + Λtθ

i
−1) =

(
I− Λt

1 + Λ11
t

)
θit +

Λt
1 + Λ11

t

θi−1. (4.2)

Therefore

|θ̂it − θ̂it−1| =

(∣∣∣∣( Λ11
t−1

1 + Λ11
t−1

− Λ11
t

1 + Λ11
t

)
θit

∣∣∣∣ , . . . ,
∣∣∣∣∣
(

ΛJ1
t−1

1 + Λ11
t−1

− ΛJ1
t

1 + Λ11
t

)
θit

∣∣∣∣∣
)′
,

and if Λ displays sufficient variation over time, then the trading volume in all assets in-

creases.

The example in Appendix C illustrates the above discussion. It shows that the absence

of trade in a bubble-free equilibrium can occur even with incomplete markets and debt

limits not covered by Judd, Kubler, and Schmedders (2003), as long as the equilibrium is

Pareto optimal. Trade is absent in the bubble-free equilibrium, and a bubble increases the

trading volume. The share volume of trade vanishes asymptotically, but the effect on the

dollar volume of trade is persistent and bounded away from zero.

Outside the class of frictionless economies studied by Judd, Kubler, and Schmedders

(2003), it is difficult to analyze at our level of generality the effect of bubble injections on

trading volume.

We focus therefore on a tractable two-agents model with complete markets and the

interdiction to trade (3.9) as penalty for default, used by Alvarez and Jermann (2001) to

make a compelling empirical case for the improved asset pricing performance of models

with limited enforcement. In this model there is trade in equilibrium, but nevertheless

bubbles (deterministic or stochastic) increase the trading volume. Small initial bubbles

can generate very large increases (respectively drops) in the volume of trade while they

run (respectively when they crash). There are also “contagion” effects, as a bubble in one

asset boosts the trading volume also in the other asset.

Since there are only two agents, the portfolio of one agent determines fully the volume

of trade in each security. In other words, for each agent i ∈ {1, 2} and security j, SV j
t =

|θi,jt − θ
i,j
t−1| and ŜV

j
t = |θ̂i,jt − θ̂

i,j
t−1|. Furthermore, there will be only two assets, and (4.2)

becomes

θ̂i,1t =
θi,1t − θ

i,1
−1

1 + Λ11
t

+ θi,1−1; θ̂i,2t = −
Λ21
t (θi,1t − θ

i,2
−1)

1 + Λ11
t

+ θi,2t . (4.3)
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The uncertainty is described by a time homogeneous Markov process (st)t∈N with states

st ∈ {1, 2}, and with a probability of reversal equal to π ∈ (0, 1]. Thus for any t, st+1 6= st

with probability π. The case π = 1 generates a deterministic economy (in which the state

alternates between the two values). There are two agents {1, 2} with identical utilities

U(c) = E
∑

t≥0 β
tu(ct), where u is strictly increasing and concave. At each period t, agent

i receives an income eit := yH if st = i and eit := yL otherwise, with yH > yL. At any

period, the agent with income yH is referred to as high-type, and the agent with income

yL is the low-type. The penalty for default is the interdiction to trade (3.9).

When agents can trade in one period Arrow securities in zero supply, the stationary

equilibria in this framework were studied by Kehoe and Levine (2001) and Alvarez and

Jermann (2001). We present these equilibria, support them with infinitely lived assets that

dynamically complete the markets (rather than with Arrow securities), and then analyze

the effect of bubble injections on trading volume.

There exists a unique stationary equilibrium. For the high (low) type agent, consump-

tion is cH (cL), wealth level (beginning of each period) is −w (w), and the unique pricing

kernel a is such that at+1

at
= qc if st 6= st+1 and at+1

at
= qnc if st = st+1. Moreover, if the

initial levels of wealth do not coincide with the steady state levels, in particular if agents

start with no wealth, as we will assume, the transition to the steady state is complete at

the first state reversal. During the transition, the agents’ consumption is constant, but dif-

ferent from the steady state levels. Steady state consumptions satisfy the market clearing

condition cL + cH = yL + yH , and the high-type agent is indifferent between defaulting or

not. Letting β̃ = βπ
1−β(1−π) , this indifference condition amounts to

u(cH) + β̃u(cL) = u(yH) + β̃u(yL). (4.4)

The pricing kernel follows from the Euler conditions of an (unconstrained) high-type,

qnc = β, qc = βu′(cL)/u′(cH). (4.5)

Let q̄c := πqc and q̄nc := (1− π)qnc. The beginning of period wealth level for the low-type

agent is

w = (yH − cH)/(1 + q̄c − q̄nc), (4.6)

(and for a high-type is −w), while the NTT debt limits for a high-type agent are φH := −w
and for a low-type agent are φL := −q̄cw/(1 − q̄nc). As shown in Alvarez and Jermann
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(2001), the quantities and prices outlined above are an equilibrium (with imperfect risk

sharing) if and only if yL < cL < cH < yH . Bidian and Bejan (2012) show that yL < cL

and cH < yH if and only if β̃u′(yL)/u′(yH) > 1, and if this assumption holds, then cL < cH

if and only if

(1 + β̃)u

(
yH + yL

2

)
≤ u(yH) + β̃u(yL). (4.7)

Condition (4.7) requires that the first best symmetric allocation in which each agent con-

sumes half of the aggregate endowment does not satisfy the participation constraints of

the high-type agents. It can be verified immediately that the price q̄ of a riskless asset is

less than 1, q̄ := Etat+1/at = q̄c + q̄nc < 1, and therefore interest rates are “high”.

We substitute now the Arrow securities with two infinitely lived assets, which dynam-

ically complete the markets. We analyze two types of dividend structure. In the first

case, analyzed in the rest of this section, one of the assets pays dividends contingent on

a reversal having occurred, and the other way around for the other asset. In the second

case, analyzed in Appendix B, asset j ∈ {1, 2} pays dividends at a given period if and only

if state j occurred at that period. We assume that agents start with no endowment of

securities, hence bubble injections will not affect agents’ debt limits (see Theorem 3.2).

There are two infinitely lived assets {1, 2} in zero supply with dividends d1
t = λ1st=st−1 ,

d2
t = λ1st 6=st−1 for t > 0 and equal to zero at t = 0, where λ > 0 and 1 is the indicator

function (for A ⊂ Ω and ω ∈ Ω, 1A(ω) is 1 if ω ∈ A and 0 if ω /∈ A). Thus the first asset

pays dividends if there is no change in state, while the second asset pays dividends after a

reversal of state. Agents start with zero endowments of the assets. We focus on a period

t ≥ 1 after the economy has reached steady state, which happens on the first state reversal.

Therefore, if the steady state is reached at T > 0 (which is an a.s. finite stopping time),

then any variable below with a subscript t is to be understood as referring to period T + t.

The fundamental values of the assets are

p1
t = λ

∑
s>t

q̄s−t−1(q̄c · 0 + q̄nc · 1) =
λq̄nc
1− q̄

, p2
t = λ

∑
s>t

q̄s−t−1(q̄c · 1 + q̄nc · 0) =
λq̄c

1− q̄
.

We replicate agents’ wealth levels with portfolios of long-lived securities, eliminating the

need for Arrow securities. Thus we construct portfolios θi for each agent such that, given

the asset prices computed before, (pt + dt)θ
i
t−1 equals −w if st = i and w if st 6= i.

Denote by θ̄j,t−1 the holdings of a low-type at t − 1 of security j. If the state changes

from t − 1 to t, then (p1
t + 0)θ̄1,t−1 + (p2

t + λ)θ̄2,t−1 = −w, while if there is no change,
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(p1
t + λ)θ̄1,t−1 + (p2

t + 0)θ̄2,t−1 = w. Solving this system of equations, we obtain

θ̄1,t−1 = wλ−1(2q̄c + 1− q̄), θ̄2,t−1 = −wλ−1(2q̄nc + 1− q̄).

Notice that the asset prices and portfolios are time invariant after the economy reaches the

steady state, and we can omit the time subscript.

We consider bubbles ε which do not crash before the steady state is reached (before T ),

and their value at T is some positive ε̄. After the steady state is reached, they grow at the

rate εc ≥ 0 if there is a state change, respectively εnc ≥ 0 if there is no state change, that is

εt = εt−1 ·
(
εc1st 6=st−1 + εnc1st=st−1

)
. A value εc = 0 implies that the bubble crashes on the

first state change, while if εnc = 0, the bubble crashes if the state does not change (after the

steady state is reached). The trading strategy Λ = Λ(ε, p) (replicating the bubble growth)

follows from

(p1
t + 0)Λ11

t−1 + (p2
t + λ)Λ21

t−1 = εt−1εc, (p1
t + λ)Λ11

t−1 + (p2
t + 0)Λ21

t−1 = εt−1εnc,

and therefore

Λ11
t−1 = λ−1(εnc − 1) · εt−1; Λ21

t−1 = λ−1(εc − 1) · εt−1. (4.8)

Denote by SV j
t (c), respectively SV j

t (nc) the share volumes in asset j if state changes (c),

respectively it does not change (nc) from t− 1 to t, and similarly for dollar volumes, and

the share and dollar volumes after the bubble injection. Notice that SV 1
t (c) = 2θ̄1 > 0,

SV 1
t (nc) = 0, SV 2

t (c) = −2θ̄2 > 0, SV 2
t (nc) = 0 and

ŜV
1
t (c) = θ̄1

∣∣∣∣ 1

1 + Λ11
t−1

+
1

1 + Λ11
t

∣∣∣∣ , ŜV 1
t (nc) = θ̄1

∣∣∣∣ 1

1 + Λ11
t−1

− 1

1 + Λ11
t

∣∣∣∣ ,
ŜV

2
t (c) =

∣∣∣∣−2θ̄2 + θ̄1
Λ21
t−1

1 + Λ11
t−1

+ θ̄1
Λ21
t

1 + Λ11
t

∣∣∣∣ , ŜV 2
t (nc) = θ̄1

∣∣∣∣ Λ21
t−1

1 + Λ11
t−1

− Λ21
t

1 + Λ11
t

∣∣∣∣ .
Therefore a bubble injection in the first asset increases the share volume of trade in both

assets at periods when there is no reversal, since the volume of trade jumps from zero to

a positive value. If the state changes, the effect of a bubble injection depends on the type

of bubble introduced.

For a stochastic bubble that crashes on the first reversal (after the steady state is

reached), εc = 0, εnc = q̄−1
nc , Λ11

t−1 = λ−1(εnc − 1)εt−1 > 0, Λ21
t−1 = −λ−1εt−1 (the case of a
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deterministic bubble is analyzed in Appendix B). If there is no reversal from t− 1 to t, the

bubble increases the trading volume in both securities. If t is large, the share volume of

trade in both securities is close to zero, but the dollar volume in the first security D̂V
1
t (nc)

is bounded away from zero, as it approaches λθ̄1. If the state changes from t− 1 to t, the

bubble crashes and Λ11
t = Λ21

t = 0. Therefore the share and dollar volume of trade in the

first asset decrease in the period when the bubble crashes, as

ŜV
1
t (c) = θ̄1

(
1 +

1

1 + Λ11
t−1

)
< 2θ̄1 = SV 1

t (c),

and D̂V
1
t (c) = p1ŜV

1
t (c) < p1SV 1

t (c) = DV 1
t (c). The volume of trade in the second

security also decreases when the bubble crashes, since it can be checked that

ŜV
2
t (c) =

∣∣∣∣−2θ̄2 + θ̄1
Λ21
t−1

1 + Λ11
t−1

∣∣∣∣ < −2θ̄2 = SV 2
t (c).

In summary, as long as the stochastic bubble is running, the share and dollar volume of

trade are higher than normal. The dollar volume of trade in the first security is bounded

away from zero. When the bubble collapses, the volume of trade shrinks to levels lower

than normal. After the crash, the trading volume reverts back to normal.

We calibrate the example using the parameters already employed by Alvarez and Jer-

mann (2001) in their analysis of the volatility of the pricing kernel in this model. Thus

β = 0.65, yH = 0.641, yL = 0.359, π = 0.25, and u(c) = c1−γ/(1 − γ), with γ = 2.

Finally, we take λ = 0.03 as being the average ratio of US net corporate dividends to gross

domestic product (GDP) for 1947-2011 (Federal Reserve Economic Data). It follows that

cH ≈ 0.639, cL ≈ 0.361, q̄nc ≈ 0.487, q̄c ≈ 0.507, p1 ≈ 1.772, p2 ≈ 1.843, θ̄1 ≈ 0.124,

θ̄2 ≈ −0.12. The value of the stochastic bubble when the economy enters the steady state

is assumed to be ε̄ = 0.001. We compare the dollar trade volumes after the bubble with

their levels without the bubble. The increase in the dollar volume of trade in the first

period if the bubble has not crashed yet is 0.007 for each asset. Therefore a very small

initial bubble, equal to 0.1% of the GDP, generates an initial increase in the total trade

volume of 14 times its size. Conditional on the bubble not having crashed, the increase in

trade volume continues to grow (for 5 periods) and reaches a maximum of 7.81% of GDP,

and then tapers off, approaching 0.25% of GDP if the bubble runs for a long time. If the

bubble crashes in the first period, the drop in trade volume equals 0.55% of GDP, while if
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the bubble is sustained for a long time and then crashes, the drop in trade volume is 16.2%

of GDP. In relative terms, when compared to the no-bubble case, the total trade volume

drops by 1.68% if the bubble crashes in the first period, and by 49.7% if the bubble crashes

after a long run. Thus small bubbles can produce disproportionately large increases in the

volume of trade, and subsequent large collapses in trade volume when they crash.

In Appendix B, we show, for completeness, that a deterministic (rather than stochastic)

bubble also increases the trading volume. Then, as a robustness check, we consider a dif-

ferent dividend structure and show that the qualitative and quantitative effects of bubbles

on trading volume are extremely similar.

5 Effects of bubbles on returns

Bubble injections affect asset returns. As in Section 4, we compare the two “equivalent”

equilibria of Theorem 3.2, the bubble-free equilibrium
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
and the

bubbly equilibrium
(
p̂, (ŵi)Ii=1, (c

i, θ̂i)Ii=1

)
. In this way, we disentangle the effects of a

bubble on the financial sector from its allocational effects (which we cannot study at this

level of generality). The analysis is straightforward, and we explore a few of the asset

pricing puzzles that can be addressed via bubbles.

Consider a trading strategy θ ∈ XJ×1 with a positive gross return at prices p, p̂, that

is Rt+1 := (pt+1 + dt+1)θt/(ptθt) ≥ 0, R̂t+1 := (p̂t+1 + dt+1)θt/(p̂tθt) ≥ 0, for all t ≥ 0. A

sufficient condition for the positivity of returns is θ ∈ XJ×1
+ , which holds in the following

discussion, as θ is assumed to represent either a market index, or a buy-and-hold portfolio

in an individual stock. Since p̂θ = pθ + εθ,

R̂t+1 =
ptθt
p̂tθt

Rt+1 +

(
1− ptθt

p̂tθt

)
εt+1θt
εtθt

. (5.1)

For example, if we want to bubbly and bubble-free returns on first stock, it is enough to

take θt = (1, 0, . . . , 0)′ ∈ RJ , for all t. In this case the returns on the first asset in the

bubbly equilibrium are

R̂1
t+1 =

p1
t

p̂1
t

R1
t+1 +

(
1− p1

t

p̂1
t

)
ε1
t+1

ε1
t

. (5.2)

Therefore the returns in the bubbly equilibrium are an average of the fundamental (bubble-

free) returns and the rate of growth of the bubble component. This property makes the

analysis of bubble effects immediate.
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A bubble increases the risk premium on the index if and only if the bubble growth rate

has a higher risk premium (covaries more negatively with the stochastic discount factor).

Similarly, the bubble increases the Sharpe ratio of the index if it has a higher Sharpe ratio

(is correlated more negatively with the stochastic discount factor). To establish these facts,

for any to random variables Z1, Z2 that are Ft+1-measurable, denote by Covt(Z1, Z2) and

ρt(Z1, Z2) their conditional covariance and conditional correlation given Ft, and by σt(Z1)

the conditional standard deviation of Z1 given Ft.

Proposition 5.1. Let a ∈ A++(p) and let mt+1 := at+1/at be the associated stochastic

discount factor. Let Rft+1 := 1/Etmt+1 be the risk free rate and Ret+1 := Rt+1 − Rft+1,

R̂et+1 := R̂t+1 −Rft+1. The following hold:

EtR̂
e
t+1 ≥ EtRet+1 (≥ 0)⇔ Et

εt+1

εt
−Rft+1 ≥ EtR

e
t+1 −R

f
t+1 (≥ 0)

⇔ Covt

(
mt+1,

εt+1

εt

)
≤ Covt(mt+1, Rt+1) (≤ 0). (5.3)

Et
εt+1

εt
−Rft+1

σt

(
εt+1

εt

) ≥
EtR

e
t+1

σt(Rt+1)
≥ 0⇔ ρt

(
mt+1,

εt+1

εt

)
≤ ρt(mt+1, Rt+1) ≤ 0⇒

⇒
EtR̂

e
t+1

σt(R̂t+1)
≥

EtR
e
t+1

σt(Rt+1)
≥ 0. (5.4)

Proof. By (3.3), the return Rt+1 satisfies Etmt+1Rt+1 = 1, and therefore its (conditional)

risk premium and Sharpe ratio satisfy

Et(Rt+1 −Rft+1) = −Rft+1Covt(mt+1, Rt+1), (5.5)

EtRt+1 −Rft+1

σt(Rt+1)
=
−Rft+1Covt(mt+1, Rt+1)

σt(Rt+1)
= −Rft+1σt(mt+1) · ρt(mt+1, Rt+1). (5.6)

Similarly, (5.5) and (5.6) also hold when Rt+1 is replaced by the bubble growth εt+1θt
εtθt

, as

Etmt+1
εt+1θt
εtθt

= 1, by (3.5). Now (5.3) follows from (5.5), while (5.4) follows from (5.6)

and

σt(R̂t+1) ≤ ptθt
p̂tθt

σt(Rt+1) +

(
1− ptθt

p̂tθt

)
σt

(
εt+1θt
εtθt

)
. (5.7)
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Proposition 5.1 shows that bubbles can increase risk premia and Sharpe ratio. However,

as implied by Proposition A.2, the return from holding a deflator-preserving bubble is the

return on a trading strategy in the existing assets. Together with (5.1), this implies that

the bubble inflated return R̂t+1 coincides with the return on a portfolio of the initial J

assets, and therefore the bubble cannot increase the risk premia and the Sharpe ratio to

levels higher than the maximal risk premia and Sharpe ratios than can be achieved by

arbitrary trading strategies (leading to positive gross returns).

Conversely, a very large bubble at t can increase the risk premium, respectively Sharpe

ratio on the index to levels arbitrarily close to those achieved by portfolios with positive

gross returns and maximal risk premium, respectively maximal Sharpe ratio (in the absence

of the bubble). Indeed, in this case ptθt/(p̂tθt) becomes arbitrarily close to zero, and

therefore the return R̂t+1 becomes arbitrarily close to εt+1θt/(εtθt). Choosing the bubble

growth to mimic the return on a portfolio with a large risk premium (Sharpe ratio) leads

to a high risk premium (Sharpe ratio) for the bubble inflated returns.18 An identical

discussion applies to kurtosis rather than risk premia or Sharpe ratios, thus a bubble can

generate fat tails in an asset, but not more so than the maximal kurtosis of a return on a

portfolio of the initial assets.

By (5.1) and (5.7), the conditional risk premium and Sharpe ratio of the bubble-inflated

returns varies over time, as the “weight” pt/p̂t of the initial return in the bubbly return

varies with the size of the bubble. In fact, a countercyclical expected bubble growth (that

is, a current boom is associated with a larger bubble and future lower expected bubbles)

introduces countercyclical movements in risk premia and Sharpe ratios. The variability of

the risk premium and Sharpe ratio over time without an accompanying variability of the

volatility of consumption came to be referred to as the conditional equity premium puzzle

(Cochrane 2000, Chapter 21).

Bubbles create movements in asset prices decoupled from changes in fundamentals.

Therefore it is rather obvious that bubbles can introduce additional volatility in asset

18Choose Λ ∈ XJ×J such that Λtθt has a high expected risk premium (Sharpe ratio), in the absence of
bubbles. If I + Λt is singular, then we perturb slightly Λt to avoid the drop in rank problem (see (3.7)),
otherwise we leave Λt unchanged. Then we set

εt+1θt
εtθt

=
(pt+1 + dt+1)Λtθt

ptΛtθt
.
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prices. For example, for a bubble ε1 in the first asset,

σ2(p̂1
t )

σ2(p1
t )

=
σ2(p1

t + ε1
t )

σ2(pt)
= 1 +

σ(ε1
t )

σ(p1
t )

(
σ(ε1

t )

σ(pt)
+ 2ρ(εt, pt)

)
,

and therefore the volatility of prices increases whenever the volatility of the bubble is high

enough (it is sufficient to be twice as high as volatility of prices), or if the correlation

between the bubble and fundamental prices is high enough (it is sufficient to be positive).

An identical argument applies to price-dividend ratios rather than prices. An extended

discussion of the excess volatility puzzle can be found in Cochrane (2000, Chapter 20).

6 Conclusion

We consider the (large) class of processes that preserve the set of pricing kernels (deflators)

when added to asset prices (“deflator-preserving” processes). Any nonnegative such process

can be injected as a rational bubble in asset prices, leading to an equilibrium with identical

allocations and pricing kernels, but with debt limits tightened proportionally to the size of

the bubble. Moreover, with enforcement limitations, if the debt bounds are endogenized as

in Alvarez and Jermann (2000) to prevent default but to allow for maximal credit expansion,

the modified debt limits in the equilibrium with bubbles still arise endogenously from the

existing enforcement limitations.

Any such deflator-preserving bubble acts therefore as a device that relaxes the debt lim-

its of the agents. Bubble collapses/inceptions endogenously reduce/increase the liquidity

(credit) available in the economy. Bubbles can cause large increases in trading volume while

they run and large collapses upon their crash, compared to trading volumes in the absence

of bubbles. The class of bubbles identified here can generate also high and time-varying

Sharpe ratios, and excess volatility of asset prices.

A Deflator-preserving processes

We characterize the set MJ(p) of deflator-preserving processes. For each t ≥ 1, let St(p)
be the set of attainable payoffs at t given the price and dividend processes p, d ∈ X1×J

+ :

St(p) := {(pt + dt)λ | λ : Ω→ RJ and λ is Ft−1 −measurable}. (A.1)
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We refer to St(p) as the period t asset span.

Lemma A.1. Let p, d ∈ X1×J
+ such that A(p) 6= ∅ and ε ∈ X1×J . The following are

equivalent:

(i) There is Λ ∈ XJ×J such that εt = (pt + dt)Λt−1 for all t ≥ 1 and there is a ∈ A(p)

such that a · ε is a martingale.

(ii) St(p+ ε) ⊂ St(p) for all t ≥ 1 and there is a ∈ A(p) such that a · ε is a martingale.

(iii) There is Λ ∈ XJ×J such that εt+1 = (pt+1 + dt+1)Λt, εt = ptΛt, for all t ≥ 0.

(iv) A(p) ⊂ A(p+ ε)

(v) For each a ∈ A(p), a · ε is a martingale.

Proof. (i) ⇔ (ii) For the implication (i) ⇒ (ii), let (pt + dt)λ ∈ St(p+ ε), with λ : Ω→ RJ ,

Ft−1-measurable. Then

(pt + ε+ dt)λ = (pt + dt)(I + Λt−1)λ ∈ St(p).

Conversely, for any λt−1 : Ω → RJ which is Ft−1-measurable, there exists λ′t−1 : Ω → RJ ,

Ft−1-measurable, such that (pt+dt+εt)λt−1 = (pt+dt)λ
′
t−1. It follows that εtλt−1 = (pt+

dt)(λ
′
t−1−λt−1), and since λt−1 was arbitrary, we conclude that each of the J components

of εt belongs to St(p). Thus εt = (pt+dt)Λt−1 for some Ft−1-measurable Λt−1 : Ω→ RJ×J .

(i) ⇒ (iii) The conclusion is immediate, since for all t ≥ 0,

εt = Et
at+1

at
εt+1 = Et

at+1

at
(pt+1 + dt+1)Λt = ptΛt.

(iii) ⇒ (iv) Let a ∈ A(p). The conclusion follows, since

Et
at+1

at
(pt+1 + dt+1 + εt+1) = Et

at+1

at
(pt+1 + dt+1)(I + Λt) = pt(I + Λt) = pt + εt.

(iv) ⇒ (v) Let a ∈ A(p). Thus a ∈ A(p+ ε). The conclusion follows, since

pt + Et
at+1

at
εt+1

a∈A(p)
= Et

at+1

at
(pt+1 + dt+1 + εt+1)

a∈A(p+ε)
= pt + εt, ∀t ≥ 0.

(v) ⇒ (i) Assume that m ∈ X is such that a ·m is a martingale, for any a ∈ A(p). Fix

a date t and state ω ∈ Ω, and denote by Ft(ω) the atom of the partition Ft containing ω
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(that is, the date t “node” containing ω, in the tree language). Assume that Ft+1 has S

atoms belonging to Ft(ω) (i.e. there are S branches leaving the chosen node). Then the

returns rt+1 conditional on the event Ft(ω) can be viewed as an S×J matrix R. Similarly

mt+1/mt conditional on Ft(ω) is represented by a vector M ∈ RS . If µ ∈ RS is interpreted

as conditional state price process at+1/at times conditional probabilities, it follows that for

any µ ∈ RS such that 1′ = µ′R, it must be the case that 1 = µ′M . Therefore there cannot

exist µ ∈ RS such that {
µ′(R1 −M) < 0

µ′(R1 −Rj) = 0, j ∈ {2, . . . , J}.

By Motzkin’s alternative theorem (Motzkin 1951), there exist α2, . . . , αJ ∈ R such that

R1 −M =
∑J

j=2 αj(R
1 −RJ). Therefore M can be written as a linear combination of the

columns of R and there exists λ ∈ XJ×1 such that mt = (pt + dt)λt−1, for all t ≥ 1.

Each component εj of ε = (ε1, . . . , εJ) is a martingale when deflated by any a ∈ A(p).

As proven above, for each j there exists λj ∈ XJ×1 such that εjt = (pt + dt)λ
j
t−1 for all

t ≥ 1. The conclusion follows by setting Λ = (λ1, . . . , λJ).

We say that there are no redundant securities at t − 1, given prices p, if there is no

λ : Ω → RJ such that λ is Ft−1−measurable, λ 6= 0 and (pt + dt)λ = 0. We give several

equivalent characterizations of the set MJ(p) of deflator-preserving processes.

Proposition A.2. The following are equivalent:

(i) ε ∈MJ(p).

(ii) a · ε is a martingale, for any a ∈ A(p) ∪A(p+ ε)

(iii) St(p) = St(p+ ε), for all t ∈ N, and a · ε is a martingale, for some a ∈ A(p).

(iv) There exists Λ,Γ ∈ XJ×J such that for all t ≥ 0,

εt = ptΛt = (pt + εt)Γt, εt+1 = (pt+1 + dt+1)Λt = (pt+1 + εt+1 + dt+1)Γt.

Moreover, M̄J(p) (see (3.7)) is a subset of MJ(p) and if there are no redundant securities

at any period t, M̄J(p) = MJ(p).
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Proof. (i) ⇔ (ii) Follows from the equivalence (iv) ⇔ (v) in Lemma A.1. A(p) ⊂ A(p+ ε)

is equivalent to a · ε is a martingale for any a ∈ A(p). Similarly, A(p+ ε) ⊂ A(p+ ε+ (−ε))
is equivalent to a · (−ε) (hence a · ε) being a martingale for all a ∈ A(p+ ε).

(i) ⇒ (iii) A(p) ⊂ A(p + ε) implies St(p + ε) ⊂ St(p) and a · ε is a martingale, for

some a ∈ A(p) (Lemma (A.1), (i) ⇔ (ii)). Similarly, A(p + ε) ⊂ A(p + ε + (−ε)) gives

St(p) ⊂ St(p+ ε).

(iii) ⇒ (iv) Using a ∈ A(p) and a · ε martingale, it follows that a ∈ A(p + ε). The

conclusion follows from Lemma A.1, (i)⇔ (iii), using St(p+ε) ⊂ St(p) and St(p+ε+(−ε)) ⊂
St(p+ ε).

(iv)⇒ (i) By Lemma (A.1), (iii)⇔ (iv), it follows that A(p) ∈ A(p+ε) and A(p+ε) ⊂
A(p+ ε+ (−ε)).

For the last part, notice that if ε ∈ M̄J(p) and Λ ∈ Λ(p, ε),

εt+1 = (pt+1 + dt+1)Λt = (pt+1 + εt+1 + dt+1)(I + Λt)
−1Λt.

Similarly, εt = ptΛt = (pt + εt)(I + Λt)
−1Λt. Choosing Γ := (I + Λt)

−1Λ, the equivalence

(iv) ⇒ (i) (just established above) shows that ε ∈MJ(p).

Finally, assume that there are no redundant securities and ε ∈ MJ(p). Then the set

Λ(ε, p) is a singleton. From part (iv), there exist Λ,Γ such that εt+1 = (pt+1 + dt+1)Λt =

(pt+1+dt+1)(I+Λt)Γt and εt = ptΛt = pt(I+Λt)Γt. Hence (I+Λ)Γ ∈ Λ(ε, p), and therefore

(I + Λ)Γ = Λ. It follows that

I = I + Λ− (I + Λ)Γ = (I + Λ)(I + Γ),

and we conclude that I + Λ is non-singular and ε ∈ M̄J(p).

MJ(p) is therefore also the set of processes ε that are a martingale when discounted

by any deflator in A(p) and A(p+ ε). Equivalently, MJ(p) is also the set of all discounted

martingales (under some a ∈ A(p)) that preserve the asset span if added to asset prices.

Finally, MJ(p) is the set of processes ε with rates of growth replicable by returns on

portfolios under the initial prices p and the adjusted prices p + ε (if the process is added

to asset prices). Thus there are some portfolios Λ = (Λ1, . . . ,ΛJ) ∈ XJ×J and Γ =
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(Γ1, . . . ,ΓJ) ∈ XJ×J such that

εjt+1

εjt
=

(pt+1 + dt+1)Λjt

ptΛ
j
t

=
(p̂t+1 + dt+1)Γjt

p̂tΓ
j
t

, ∀t ≥ 0,∀j ∈ {1, . . . , J},

where p̂ = p + ε. Finally, the last part of the proposition shows that if there are no

redundant securities, than the (unique) portfolio Λ replicating the rate of growth of ε (at

prices p) can be used to construct a portfolio Γ replicating the rate of growth of ε at prices

p+ ε, and therefore making the structure of the set MJ(p) substantially more transparent.

B Extensions of the example in Section 4

For completeness, we show that a deterministic (rather than stochastic) bubble also in-

creases the trading volume in the example of Section 4. Then we consider a different

dividend structure and show that the qualitative and quantitative effects of bubbles on

trading volume are extremely similar.

For a deterministic bubble, εc = εnc = q̄−1, Λ11
t−1 = Λ21

t−1 = λ−1(1 − q̄)q̄−tε̄. If there

is no reversal from t − 1 to t, the bubble increases the volume of trade in both securi-

ties, as seen before. However, asymptotically these increases vanish except for the dol-

lar volume of trade in first asset. Indeed, for large t, since Λ11
t ↗ ∞, it follows that

ŜV
1
t (nc), ŜV

2
t (nc), D̂V

2
t (nc) ≈ 0, while D̂V

1
t (nc) ≈ λθ̄1. When there is a reversal from

t−1 to t, the share volume of trade in the first security decreases, while it increases for the

second security. The dollar volume of trade increases however even for the first security,

D̂V
1
t (c) =

(
p1
t + εt

)
ŜV

1
t (c) =

(
p1
t (1 + Λ11

t ) + p2
tΛ

21
t

)
ŜV

1
t (c) > p1

t · 2θ̄1 = DV 1
t .

For large t, ŜV
1
t (c) ≈ 0, ŜV

2
t (c) ≈ 2θ̄1 − 2θ̄2, D̂V

2
t (c) ≈ 2p2(θ̄1 − θ̄2), while D̂V

1
t (c) ≈

λθ̄1(1+ q̄)/(1− q̄). Thus a deterministic bubble in the first asset always increases the dollar

volumes of trade in both assets. The increase in the dollar volume of trade in the first asset

is persistent.

We check next the robustness of the conclusions obtained in the example in Section 4

by assuming that dividends depend on the current state (rather than whether a reversal

occurred). The dividends of the two securities are dit = λ1st=i for t > 0, and zero at t = 0.

Thus asset j ∈ {1, 2} pays dividends λ at t if state j is realized at t, and zero otherwise.

It is immediate to see that asset prices depend only on the realization of the current state,
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thus pjt = pj(st). The fundamental valuation equation gives

p1(1) = q̄c
(
p1(2) + 0

)
+ q̄nc

(
p1(1) + λ

)
, p1(2) = q̄c

(
p1(1) + λ

)
+ q̄nc

(
p1(2) + 0

)
,

hence

p1(1) =
1

2
· λq̄

1− q̄
+

1

2
· λ(q̄nc − q̄c)

1− (q̄nc − q̄c)
, p1(2) =

1

2
· λq̄

1− q̄
− 1

2
· λ(q̄nc − q̄c)

1− (q̄nc − q̄c)
.

By symmetry, p2(1) = p1(2), p2(2) = p1(1). Let θit−1(k) denote the portfolio of agent i at

t− 1 if the state realized at t− 1 is k. It follows that

(p1(1) + λ)θ1,1
t−1(1) + p2(1)θ1,2

t−1(1) = −w, p1(2)θ1,1
t−1(1) + (p2(2) + λ)θ1,2

t−1(1) = w,

and therefore θ1,1
t−1(1) = −θ1,2

t−1(1) = −w/(p1(1)−p1(2)+λ) < 0. A similar reasoning shows

that θ1,1
t−1(2) = −θ1,2

t−1(2) = θ1,1
t−1(1). Since the steady state portfolios are time invariant

and do not depend on the state process, we can drop the time subscripts and the state

arguments. The agents hold balanced amounts of the two securities, equal in absolute value,

but of opposite sign. The share and dollar volume of trade in both securities are zero (after

the steady state is reached), SV j
t = DV j

t = 0, j ∈ {1, 2}. Therefore an (arbitrary) bubble

injection increases the share and dollar volume of trade in all securities.

Consider first a deterministic bubble (εt) (in the first asset). The process Λ ∈ X2×1

satisfying (pt + dt)Λt−1 = εt is Λ11
t−1 = Λ21

t−1 = ε̄q̄−t(p1(1) + p2(1) + λ)−1. The volume of

trade t periods after the economy reaches the steady state is

ŜV
1
t =

∣∣∣∣ 1

1 + Λ11
t

θ1,1 − 1

1 + Λ11
t−1

θ1,1

∣∣∣∣ = |θ1,1
t |

Λ11
t (1− q̄)

(1 + Λ11
t )(1 + q̄Λ11

t )
→t→∞ 0,

ŜV
2
t =

∣∣∣∣θ1,2 − Λ21
t

1 + Λ11
t

θ1,1 − θ1,2 +
Λ21
t−1

1 + Λ11
t−1

θ1,1

∣∣∣∣ = ŜV
1
t →t→∞ 0,

D̂V
1
t = (p1(st) + ε̄q̄−t)ŜV

1
t →t→∞ |θ1,1|(1− q̄)(p1(1) + p1(2) + λ).

It follows that the market-wide increase in the share volume of trade induced by a deter-

ministic bubble (in the first asset) vanishes asymptotically, while the increase in the dollar

volume of trade in the first asset is persistent.

The effects of a stochastic bubble can be analyzed in a similar fashion. Consider (as

in Section 4) a bubble in the first asset that crashes on the first reversal (after the steady
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state is reached). For concreteness, assume that the economy starts in state 2 and therefore

the steady state is reached when the state switches to 1 for the first time. Thus εc = 0,

εnc = q̄−1
nc . The bubble spanning portfolios satisfy

(p1(1) + λ)Λ11
t−1 + p2(1)Λ21

t−1 = εncεt−1, p1(2)Λ11
t−1 + (p2(2) + λ)Λ21

t−1 = 0,

and therefore

Λ11
t−1 =

εt−1q̄
−1
nc (p1(1) + λ)

(p1(1) + λ)2 − (p1(2))2
, Λ21

t−1 = − εt−1q̄
−1
nc p

1(2)

(p1(1) + λ)2 − (p1(2))2
.

It can be checked immediately that Λ11
t−1 is positive and grows at the rate q̄−1

nc > 1 as

long as the bubble does not crash. As was the case for the deterministic bubble, the share

volume of trade in both securities approaches zero if the bubble runs for a long time, but

the dollar volume of trade in the first asset is bounded away from zero, and approaches

|θ1,1|(1− q̄nc)((p1(1) + λ)2 − (p1(2))2)/(p1(1) + λ).

With the numerical calibration of the previous section, p1(1) ≈ 2.711, p1(2) ≈ 2.712,

θ1,1 ≈ −0.083. A stochastic bubble (crashing on the first reversal) of size 0.1% of the

GDP at the period when the economy reaches the steady state increases the total trade

volume by 1.5% of GDP in the first period. The trade volume increase continues to grow

initially, reaching a maximum of 7.97% of GDP after 5 periods, and then starts to drop,

but nevertheless the increase is persistent and approaches 0.25% of GDP if the bubble runs

for a long time.

C Trading volume in an example with incomplete markets

The uncertainty is described by a time homogeneous Markov process (st)t∈N with st ∈
{1, 2, 3}, having a transition probability matrix π with strictly positive entries. There are

two agents {1, 2} with utilities U i(c) = E
∑

t≥0 β
tu(ct), where u is strictly increasing and

strictly concave. There are two assets in unit supply. In each period, the first asset pays

y > 0 if the current state is 1, y/2 in state 2, and 0 in state 3. The second asset pays 0 in

state 1, y/2 in state 2, and y in state 3. We assume we have a security markets economy,

in that agents’ only income is generated by dividends resulting from their asset holdings.

Agent i ∈ {1, 2} has an initial endowment of security i equal to 1, and a zero endowment
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of the other security. The agents face zero debt limits.19

We construct a Pareto optimal equilibrium in which expected (gross) returns are equal

to β−1 and agents have constant consumption. Thus the securities are fairly priced in that

their price equals the expected value of dividends discounted at the risk free rate β−1.

There will be no trade after the initial period, when the portfolios are adjusted once and

for all. This is not surprising in light of the result in Judd, Kubler, and Schmedders (2003)

described before, and emphasizes that the absence of trade is a consequence of Pareto

optimality (rather than of complete markets).

Asset prices are the present value of future dividends,

pjt = Et
∑
s>t

βs−tdjs, ∀j ∈ {1, 2}, ∀t ≥ 0. (C.1)

Beginning of period wealth levels are obtained from the intertemporal budgets,

(pt + dt)θ
i
t−1 = Et

∞∑
s≥t

βs−tci =
ci

1− β
, ∀i ∈ {1, 2}, ∀t ≥ 0. (C.2)

By writing (C.2) at t = 0 we obtain the (constant) consumption levels,

ci = (1− β)(pi0 + di0) = (1− β)
∞∑
t=0

βt · Edit, ∀i ∈ {1, 2}. (C.3)

Notice that p1
t + p2

t = βy/(1− β) and p1
t + d1

t + p2
t + d2

t = y/(1− β). Therefore, generically

in π, (C.2) admits only the solution

θi,1t = θi,2t =
ci

y
, ∀i ∈ {1, 2},∀t ≥ 0. (C.4)

To check that the allocations, portfolios and prices described in (C.1)-(C.4) form an equi-

librium, it is enough to prove that the consumptions and portfolios are optimal for each

agent, as the market clearing conditions are clearly satisfied. But this is true, since the

given consumptions and portfolios satisfy the necessary and sufficient Kuhn-Tucker and

19These, of course, are NTT when the penalty for default is the interdiction to borrow (3.10). Since
agents’ wealth originates solely from financial wealth, these debt limits are also given by (3.11), where debt
is restricted by the present value of future endowments.
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transversality conditions for agents’ utility maximization problems:

pt = Et
βu′(ci)

u′(ci)
(pt+1 + dt+1),∀t ≥ 0, and lim

t→∞
Eβtu′(ci)ptθ

i
t = 0.

Given the zero volume of trade following the initial period, arbitrary bubble injections

increase the share and dollar volume of trade.20 To analyze further the volume of trade

effects, we focus for concreteness on a deterministic bubble with an initial value ε̄, injected

in the first asset. Thus εt = β−tε̄. The bubble spanning portfolios are generically (in π)

unique and given by

Λ11
t−1 = Λ21

t−1 = ε̄β−ty−1(1− β). (C.5)

By (4.3) and (C.4) the share volume of trade in both assets increases, but this increase

vanishes asymptotically, as − Λ21
t

1+Λ11
t

= 1
1+Λ11

t
− 1 and

ŜV
1
t = |θ̂i,1t − θ̂

i,1
t−1| =

∣∣∣∣∣θ
i,1
t − θ

i,1
−1

1 + Λ11
t

−
θi,1t−1 − θ

i,1
−1

1 + Λ11
t−1

∣∣∣∣∣ =
θ2,1
t (1− β)Λ11

t

(1 + Λ11
t )(1 + βΛ11

t )
→t→∞ 0,

ŜV
2
t = |θ̂i,2t − θ̂

i,2
t−1| =

∣∣∣∣( 1

1 + Λ11
t

− 1

)
θi,1t −

(
1

1 + Λ11
t−1

− 1

)
θi,1t−1

∣∣∣∣ = ŜV
1
t →t→∞ 0.

However the increase in the dollar volume of trade in the first asset is persistent, as

D̂V
1
t = (p1

t + εt)ŜV
1
t → lim ε̄β−tŜV

1
t = c2.
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